
Multithreading Issues on

Contemporary PowerPC

Microprocessors

Hugh Blemings

A Masters Thesis.

Part of the course requirements of COMP6702,

Masters in eScience,

The Department of Computer Science

Australian National University

November 2006

c© Hugh Blemings

Typeset in Palatino by TEX and LATEX 2ε .

Except where otherwise indicated, this document is my own original work. Any

trademarks and product names that appear in this document are the property of

their respective owners.

Hugh Blemings

29 November 2006

This thesis is respectfully dedicated to Dr. Mark Jarnyk (1963-2006). A dear friend,

a mentor in all things academic, scientific & technical, a connoisseur of tea and a fine

hacker. Greatly missed.

Acknowledgements

I thank Dr Peter Strazdins, my project supervisor for his encouragement, support,

guidance and input into this work. My thanks also to Dr Alistair Rendell, the convener

of the COMP6702 course for his support and input along the way.

I am fortunate to work with a tremendous group of people at IBM. Thankyou to

Ralph Christ, my manager at IBM, for his support in allowing me to undertake the

Masters course. Just about everyone at OzLabs fielded a question from me in the last

six months in relation to this work, thanks guys. My thanks also to the broader group

of colleagues at The Linux Technology Centre, Systems and Technology Group and

IBM Research for their support.

While personal acknowledgements are unconventional, I none the less thank my

wife Lucy and daughter Rachael for their support throughout my studies. I’m looking

forward to a bit more family time in 2007...

vii

viii

Abstract

Contemporary high performance microprocessors are moving beyond faster clocks

and wider busses to meet the growing demands for computational power. Techniques

such as multiple threads of execution and heterogeneous processing cores are becom-

ing more mainstream bringing with them interesting challenges for operating system

and application developers alike.

We sought to quantitatively assess the benefit or otherwise of Chip Multi-Processing

(CMP) and Simultaneous Multi-Threading (SMT) using a number of low level and ar-

tificial benchmarks, and contrast these results with those for more conventional SMP.

In this Thesis we present the results of our research and experiments on the POWER5

microprocessor.

For the majority of codes enabling SMT was shown to increase performance by

20% or more. Conversely a small number of cases saw performance drop by up to

96%.

We also demonstrate the benefit of CMP for codes such as NAS parallel when

benchmarked against an SMP equivalents, improvements of 2.5x being observed in

some instances.

Results from measuring low level barrier and lock performance underscores the

need for hierarchical algorithms to be refined to be aware of SMT, CMP and SMP

characteristics.

Overall our investigations suggest that both SMT and CMP are of benefit, often

considerable, but aren’t without subtle quirks.

ix

x Contents

Contents

Acknowledgements vii

Abstract ix

1 Project Overview 1

1.1 Basis of this Work . 1

1.2 Processor Architectures Examined . 1

1.3 Benchmarks . 2

1.4 Organisation . 2

2 Benchmarks 3

2.1 STREAM . 3

2.1.1 Background . 3

2.1.2 Benchmark Internals . 3

2.1.2.1 Copy Kernel . 4

2.1.2.2 Scale Kernel . 4

2.1.2.3 Add Kernel . 4

2.1.2.4 Triad Kernel . 5

2.1.3 Stream bandwidth calculations . 5

2.1.4 Stream on MP systems . 5

2.2 NAS Parallel . 5

2.3 Other Benchmarks - Apex-Map and perflab 5

3 Processor Architectures 7

3.1 Introduction . 7

3.1.1 Multithreading and Multi-Processing - A timeline 7

3.1.2 Chip Multi-Processing - An Overview 8

3.1.3 Multithreading - An Overview . 8

3.2 POWER5 . 9

3.2.1 Background . 9

3.2.2 Threading Models . 10

3.2.3 Instruction Fetching on POWER5 11

3.2.4 Thread Priority . 11

3.2.4.1 Thread Priority in Linux 11

3.2.5 Dynamic Resource Balancing . 12

3.2.6 Single-threaded Operation . 12

3.2.7 Memory Subsystem on POWER5 12

xi

xii Contents

3.2.7.1 Cache on POWER5 . 12

3.2.7.2 Main Memory on POWER5 14

4 Experimental Setup 15

4.1 Systems Used . 15

4.2 Processor & Memory Affinity under Linux 15

4.2.1 Processor Affinity . 16

4.2.2 Setting Processor Affinity . 16

4.2.3 Memory Affinity . 17

4.3 Threads, Cores, Dies, Oh My! . 17

4.4 Comparing SMT and ST - “SMT vs ST pairs” 19

4.5 Operating System . 19

4.6 Compiler . 19

4.7 Automation . 19

4.8 Thread to CPU affinity . 20

4.9 STREAM Benchmark . 20

4.9.1 Baseline Setup . 20

4.9.2 Details of changes . 20

4.9.3 Main Memory & Cache Runs . 21

4.10 Barrier & Lock Benchmarks . 21

4.10.1 Time Keeping . 21

4.10.2 Barrier Codes . 22

4.10.3 Round-Robin Lock Codes . 23

4.10.4 Overall Benchmark . 23

4.11 NAS Parallel Benchmarks . 23

4.11.1 Basic Setup . 23

5 A Performance Model for Round-Robin Locking 29

5.1 Background . 29

5.2 Description of model . 29

5.3 Putting into practice . 30

5.4 Atomic update overheads . 30

6 Results & Discussion 33

6.1 STREAM . 33

6.1.1 Initial trials . 33

6.1.2 Main Memory Bandwidth Measurements 34

6.1.2.1 Main Memory Bandwidth - non-SMT cases 34

6.1.2.2 Main Memory Bandwidth - SMT cases 35

6.1.2.3 Main Memory Bandwidth Per Thread 36

6.1.3 Cache Bandwidth Measurements 37

6.1.3.1 Contrasting Cache Bandwidth for different thread com-

binations . 38

6.1.4 Comparison of Copy with Scale, Add & Triad codes 39

Contents xiii

6.1.4.1 Specifics of non-SMT cases 39

6.1.4.2 Specifics of SMT enabled cases 40

6.1.5 Conclusions about STREAM results 41

6.1.5.1 A word from McCalpin 41

6.1.5.2 SMT mostly harmless ? 42

6.2 Barrier & Locking Measurements . 43

6.2.1 Barrier Results . 43

6.2.1.1 pthread results . 44

6.2.1.2 atomic results . 44

6.2.1.3 Influence of SMT . 44

6.2.1.4 Conclusions for Barriers 44

6.2.2 Round-Robin Locking Results . 45

6.2.2.1 Influence of SMT . 46

6.2.3 Summary of SMT effects on Barrier and Locking trials 46

6.2.4 Comparison of results against model 47

6.2.5 Additional Barrier and Locking Results 47

6.3 NAS Parallel Benchmarks . 48

6.3.1 Starting with an Outlier . 48

6.3.2 Analysis of non-SMT cases . 49

6.3.3 Analysis of SMT cases . 50

6.3.4 Super Linear Speedup . 50

7 Conclusions & Future Work 51

7.1 Conclusions . 51

7.1.1 Is SMT worth it ? . 51

7.1.2 Suitability of selected benchmarks 51

7.1.3 A Case for Hierarchical Barriers & Locks 52

7.1.4 Disabling CPUs . 52

7.1.5 Multicore is here to stay . 52

7.2 Future Work . 53

7.2.1 Recording Amount of Funny . 53

7.2.2 Memory Bandwidth vs Locality Measurements 54

7.2.3 Hardware Assisted Barrier Techniques 54

7.2.4 Physical address chasing Kprobes 54

A Additional Results 57

A.1 Additional Barrier/Lock Results . 57

B Other articles 59

C Other Benchmarks 61

C.1 Apex-map . 61

C.1.1 Background . 61

C.1.2 Benchmark Internals . 61

C.2 perflab . 62

xiv Contents

C.2.1 Background & Benchmark Operation 62

C.2.2 Perflab in Our Work . 62

Bibliography 63

Chapter 1

Project Overview

Simultaneous Multi Threading (SMT) and Chip Multi-Processing (CMP) have become

commonplace in the last few years. The Australian National University’s Department

of Computer Science (DCS) had recently taken delivery of a pair of OpenPOWER

720 systems. The machines came courtesy of the Canberra based “OzLabs” group

within IBM’s Linux Technology Centre. The desire to make use of the latter to better

understand the former was formalised in a proposal for a Masters literature review

and subsequent research project.

In this thesis we start with relevant findings in the earlier literature review [Blem-

ings 2006]. From here we explore the POWER5 processor architecture in some de-

tail, conduct a series of experiments to quantify memory bandwidth, barrier/locking

primitives and overall system performance using NAS Parallel.

Results are provided and discussed, particularly the contrast of SMP, SMT and

CMP. We conclude with some thoughts on potential future work and lessons learned.

1.1 Basis of this Work

Simply put, we took two of the benchmarks identified in the Literature Review, added

one of our own and proceeded to run this on the OpenPOWER720 system in a variety

of CPU configurations.

From this we were able to determine the differing performance traits of SMP, CMP

and SMT, discovering a couple of surprises along the way.

1.2 Processor Architectures Examined

This thesis focuses on IBM’s POWER5 architecture which we describe in detail in

Section 3.2.

Both the Sun UltraSPARC T1 (aka Niagara) and Sony/Toshiba/IBM Cell Broad-

band Engine (CBE - aka the Playstation3 chip) were discussed in our earlier literature

review [Blemings 2006] and represent two other approaches to multiprocessing.

1

2 Project Overview

1.3 Benchmarks

Based on our earlier work we describe two benchmarks in Chapter 2, STREAM §2.1

and NAS Parallel §2.2.

In §4.10 we describe some code written to allow us to quantify low level barrier

and locking performance.

1.4 Organisation

This thesis is divided into seven chapters. This chapter provides an overview of the

work and it’s motivations. Chapter 2 introduces the STREAM and NAS benchmarks

and makes note of two other benchmarks that, while not used in this work, are rel-

evant to the general area of study. Chapter 3 discusses microprocessor architectures

in particular IBM’s POWER5 design which is the centre piece of this work. Chap-

ter 4 details the experimental setup used, including code specifically written for the

project and modifications to existing codes. Chapter 5 proposes a simple model for

the performance of round-robin locking algorithms. Chapter 6 details our results and

Chapter 7 provides some conclusions and direction for future work.

Chapter 2

Benchmarks

In this chapter we describe two benchmarks that are used in our experiments and give

pointers to two others that warrant consideration in future work.

2.1 STREAM

2.1.1 Background

The STREAM benchmark is a tool that allows memory bandwidth to be measured.

Aimed at high performance systems or supercomputers, it is the work of John D.

McCalpin, then of University of Delaware, now at AMD by way of SGI and IBM. To

keep STREAM vendor independent it is hosted and overseen by two academics at the

University of Virginia.

The intent of STREAM is not to suggest that “real” applications have no

data re-use, but rather to decouple the measurement of the memory sub-

system from the hypothetical “peak” performance of the machine. In this

respect the test is quite complementary to the LINPACK benchmark test,

which is typically optimised to the point that a very large fraction of full

speed is obtained on modern machines, independent of the performance

of their memory systems. [McCalpin 1995]

On uniprocessor machines, the benchmark can be trivially compiled and run. For

use on multiprocessor systems, STREAM is designed to make use of OpenMP or MPI

libraries for SMP and cluster machines respectively. As we cover in Section 4.9, we

ended up modifying STREAM quite extensively for our work.

Data is available from the University of Virginia web site for a large range of ma-

chines. We make use of the data for the OpenPOWER 720 to validate our results.

2.1.2 Benchmark Internals

STREAM does some initial setup to attempt to determine timer accuracy on the host

system and work out sane values for the amount of memory to use.

3

4 Benchmarks

Thus equipped, it repeats four simple kernels ten times, each kernel working on

several tens megabytes of data assuming default settings. This data set size ensures

that main memory must be used - the benchmark cannot “fit” purely within cache.

The four kernels are Copy, Scale, Add, and Triad. McCalpin describes them thus;

Each of the four tests adds independent information to the results:

• “Copy” measures transfer rates in the absence of arithmetic.

• “Scale” adds a simple arithmetic operation.

• “Sum” adds a third operand to allow multiple load/store ports on

vector machines to be tested.

• “Triad” allows chained/overlapped/fused multiply/add operations.

We now examine each kernel. N is the size of the arrays (2,000,000 by default),

a[], b[], c[] are the three pre-allocated arrays of doubles which are used in

various ways by each kernel. scalar is a double set to 3 before the kernels are run,

this value ensuring the compiler will not optimise the multiplication to bitwise shifts.

2.1.2.1 Copy Kernel

The Copy kernel has one read and one write operation per iteration for a total of two

memory operations per iteration.

for (j=0; j<N; j++)
c[j] = a[j];

2.1.2.2 Scale Kernel

The Scale kernel is effectively one read and one write operation per iteration. As McCalpin
alludes to, on modern machines we can assume that scalar will be held in a register and
that the execution time for the multiply operation will be insignificant compared to the main
memory accesses. Like Copy this gives a total of two memory operations per iteration.

for (j=0; j<N; j++)
b[j] = scalar * c[j];

2.1.2.3 Add Kernel

The Add kernel is two reads, one write and one arithmetic operation per loop iteration - a total
of three memory operations.

for (j=0; j<N; j++)
c[j] = a[j] + b[j];

§2.2 NAS Parallel 5

2.1.2.4 Triad Kernel

The Triad kernel is effectively two reads and one write, we again assume that the multiply
operation will be insignificant relative to the memory accesses and that scalar will be held
in a register. Like Add this gives three memory operations per cycle.

for (j=0; j<N; j++)
a[j] = b[j] + scalar * c[j];

2.1.3 Stream bandwidth calculations

As each benchmark is run the time taken for the specified number of trials is measured and

from this the number of iterations per second calculated. This is then multiplied by the num-
ber of memory operations per iteration (two or three) and the size of the data structures in use
to arrive at the final bandwidth figure.

2.1.4 Stream on MP systems

Stream is designed to make use of OpenMP if it is available and parallelise the kernels appro-
priately through use of #pragma omp parallel for.

If OpenMP is unavailable, the author of stream suggests running one instance per CPU
as separate processes with large values of N so they keep going for some time. The final in-
stance is then run “normally” and the results manually calculated on the basis of these figures
multiplied by the number of instances running. [McCalpin 2006]

As is discussed in Section 4.9 we followed this approach to begin with and then moved to
customise STREAM to provide better control over memory and processor affinity.

2.2 NAS Parallel

The NAS Parallel Benchmarks (NPB) are a set of programs that assist in evaluation the per-
formance of parallel supercomputers. The work of NASA, NPB 1.0 was developed in the late
1980’s and published shortly thereafter [Bailey et al. 1991] Derived from CFD applications
NPB 1.0 consists of five kernels and three pseudo-applications.

The 1991 work is updated in [Bailey et al. 1994] and [Bailey et al. 1995] sees substantial

changes to NPB with the release of NPB 2.0.

The NPB have been investigated within DCS before on several occasions including work
done by Jean [Jean 2005] and the SPARC-Sulima team1

Jean provides a concise description of NPB in his 2005 paper which we commend to the
reader for further information.

2.3 Other Benchmarks - Apex-Map and perflab

Two other benchmarks were discussed in the literature review [Blemings 2006] which pre-

ceded our work this semester: Apex-Map, a memory benchmark, and perflab, a set of codes
for evaluating locking algorithms.

1http://cs.anu.edu.au/Peter.Strazdins/postgrad/completed/NPBArchEvals.html.
This work sought to explore the effects of architectural changes on system performance when running
these benchmarks.

6 Benchmarks

We ran Apex-map in a single thread configuration to get some experience with it but
ultimately, largely due to time constraints, elected to stick with STREAM.

perflab was not used as we lacked time to fully understand its operation and elected to
concentrate on lower level locking codes.

While in we did not make use of either they both have the potential to be useful in future
work in this area and so we have included our original observations about them, slightly
updated, in Appendix C.1 (Apex-map) and Appendix C.2 (perflab).

Chapter 3

Processor Architectures

3.1 Introduction

In the literature review that preceded this work we examined three process architectures in
varying degrees of detail: IBM’s POWER5, The Sony/Toshiba/IBM Cell Broadband Engine

(CBE) and Sun’s UltraSPARC T1 (aka Niagara). All three provide multiple threads on a single
core but beyond that they are quite different devices.

The focus on our research was the IBM POWER5 and accordingly it is this architecture we
detail in the following sections. First however a general perspective on Multithreading and
Multi-processing.

3.1.1 Multithreading and Multi-Processing - A timeline

Symmetric Multi-Threading (SMT) and Chip Multi-Processing (CMP) are not new concepts.
In 1995 Tullsen, Eggers and Levy made a case for SMT [Tullsen et al. 1995] and 1996 saw
Olukotun et al. advancing an argument for CMP [Olukotun et al. 1996]. The following year
Hammond, Nayfeh and Olukotun contributed to a Theme Feature on Billion Transistor Mi-
croprocessors in IEEE Computer, once again putting the case for CMP [Hammond et al. 1997].

All three works have a common theme - that conventional uniprocessor models will only
get us so far into the future before thread level parallelism of some form or other will be

required. They argue that in order to meet the growing demands for computational power,
it will no longer be sufficient to rely on faster clock rates and increasingly aggressive out of
order execution and pipelining.

While on the basis of various vendors marketing, one might assume otherwise, imple-
mentations of SMT and/or CMP are not all that new either. In 2000 IBM’s RS64 IV processors
provided coarse grained SMT capability [Borkenhagen et al. 2000] and CMP was a centre-
piece of the IBM POWER4 line in 2001 [Tendler et al. 2002]. SMT also appeared as in Intel
Xeon (HT)1 offerings in late 2000.2

That said, it could be fairly argued that SMT only reached mainstream consciousness with

the release of the Intel Pentium4 (HT) microprocessor circa 2004. While CMP has been com-
monplace in IBM’s POWER CPUs for some time now, being server oriented parts they are
perhaps rather less visible than Intel’s offerings.

In early 2006 we find it starting to sink in within industry that multiple threads of execu-
tion, be they SMT, CMP or both is indeed the direction of the future and that accordingly there

1Pentium4 CPUs implemented what Intel called Hyper-Threading Technology - using the nomencla-
ture of this paper, HT is SMT as we define below.

2Implementations may go back further than this to the mid 1960’s - we were reminded that the I/O
processors of the CDC6600 system were multithreaded.

7

8 Processor Architectures

is a need to adopt threading in their applications.

In their work on CMP, the authors of [Spracklen and Abraham 2005] present an interesting
mental picture: “In our taxonomy, SMT and CMP are two extremes of a continuum charac-
terised by varying degrees of sharing of on-chip resources among the strands.” As we shall
see, many contemporary microprocessors all but span this continuum on a single die.

3.1.2 Chip Multi-Processing - An Overview

CMP is conceptually straightforward. Take two or more normal processor cores, put a stan-
dard SMP interconnect between them, possibly share some cache, shared or separate memory
controllers and there’s your design. This simplicity is of course attractive to designers as it re-
duces design complexity and test overhead. There are some variations on this basic approach,

for example having a FPU shared between cores as is seen on the UltraSPARC T1, but the
essence of the CMP approach remains.

CMP is also attractive from a software standpoint - they appear as a conventional SMP.
Depending on the design there may be NUMA effects, the details of the particular design will
dictate to what extent this is the case.

3.1.3 Multithreading - An Overview

Multithreading is a more subtle approach to achieving multiple threads of execution. Several
different approaches are used, defined in [Sinharoy et al. 2005] as Coarse-grain Multithread-
ing, Fine-grain Multithreading and Simultaneous Multithreading.

The three approaches differ in the detail of how threads are run. For example switching
threads every cycle versus switching due to a long latency event and/or whether different

execution units on the core allow instructions from different threads to run simultaneously or
not.

Armed with these initial remarks, we quote from [Sinharoy et al. 2005, pp 506]

In coarse-grain multithreading, only one thread executes at any given instant in
time. When a thread encounters a long-latency event, such as a cache miss, the
hardware swaps in a second thread to use the machine resources rather than

letting it idle. By allowing other work to use what otherwise would have been
idle cycles, overall system throughput is increased. To conserve chip area, both
threads share many of the system resources, such as architected registers. Hence,
to swap program control from one thread to another requires several cycles. IBM
introduced coarse-grain threading on the IBM pSeries S85 [Borkenhagen et al.
2000].

Fine-grain multithreading switches between threads each cycle. In this class of
machines [Alverson et al. 1990], a different thread is executed in a round-robin
fashion. As in coarse-grain multithreading, the architected states of multiple
threads are all maintained in the processor. Fine-grain multithreading allows
overlap of short pipeline latencies by letting another thread fill in execution gaps

that would otherwise exist. With a larger number of threads, longer latencies
can be successfully overlapped. For long-latency events in a single thread, if the
number of threads is less than the number of latency cycles, there will be empty
execution cycles for that thread. To accommodate this design, hardware facilities
are duplicated. When a thread encounters a long-latency event, its cycles remain
unused.

§3.2 POWER5 9

Simultaneous multithreading maintains the architected states of multiple threads.
This type of multithreading is distinguished by having the ability to schedule in-
structions from all threads concurrently [Tullsen et al. 1995]. On any given cycle,
instructions from one or more threads may be executing on different execution
units. With SMT, the system adjusts dynamically to the environment, allowing
instructions to execute from each thread if possible while allowing instructions
from one thread to utilise all of the execution units if the other thread(s) cannot
make use of them. This allows the system to dynamically adjust to the environ-
ment. The POWER5 system implements two threads per processor core. Both

threads share execution units if both have work to do. If one thread is waiting
for a long-latency event, the other thread can achieve a greater share of execution
unit time.

3.2 POWER5

The IBM POWER5 Microprocessor is a two-way simultaneous multithreaded (SMT) dual core
(CMP) chip. Each die includes;

• 64k, two way set associative L1 Instruction cache for each core

• 32k, four way set associative L1 Data for each core

• 1.875MB of 10 way set associative L2 cache shared between the two cores

• Directory and interface logic for the external L3 cache (36MB)

• DRAM controller

• Fabric interconnect

• I/O interconnect

• Power management, JTAG interfaces etc.

• Clock frequencies ≃1.65GHz and above (system dependent)

3.2.1 Background

POWER5 is a descendant from the earlier POWER4 and POWER3 architectures which are
nicely detailed in [Tendler et al. 2002] and [Papermaster et al. 1998] respectively.3

POWER5 is designed to allow effective scalability up to 64 physical processors (128 threads)
at one extreme yet be a good fit for one and two way systems. Physically this achieved by hav-
ing three building blocks.

• A Multi Chip Module (MCM) sees four POWER5 and four cache chips brought together
on a single ceramic substrate 95mm on a side. Thus an MCM has eight complete cores
(16 threads). MCMs are most commonly used in larger SMP configurations.

• A Quad Chip Module (QCM) sees two POWER5 CPUs and two cache chips on a single
ceramic package for a total of four cores/eight threads. QCMs are used in more recent
single rack unit designs.

3If a longer historical view is sought, a brief but accurate history of POWER, PowerPC and associated
technologies appears in “POWER to the people” [Mikes 2004]

10 Processor Architectures

L2

Fabric

L3

Mem Ctrl SMI-II

Processor Die

Dual Chip Module (DCM)

L3 Die

DDR
DDR

DDR
DDR

DDR
DDR

DDR
DDR

CPU Card

Core
L1 i/d
SMT

Core
L1 i/d
SMT

Inter-DCM
Fabric

System I/O

SMI-II

Figure 3.1: POWER5 Block Diagram. Two such cards are used in the 4-Way configuration of

the OpenPower 720

• The Dual Chip Module (DCM) is shown with it’s associated memory sub-system in Fig-
ure 3.1). The DCM comprises a single CPU and cache chip and provides a two core/four
thread building block4. Two DCMs are used in the OpenPower 720.

The POWER5 is a complex part and a working knowledge will be important to our under-
standing.5 Hence we will cover it’s internals in more detail in the following sections.

3.2.2 Threading Models

Sections 3.1.3 and 3.1.2 provide general descriptions of threading models. Using those defini-
tions POWER5 is an CMP design where each core also supports SMT. POWER5 is also able to
run in single-threaded (ST) mode - SMT disabled - as well as allowing one of the two cores on
a chip to be disabled - CMP disabled.

From a software standpoint this allows a single chip to look like;

• A Uni-processor - a single thread of execution - no SMT or CMP

• A 2-Way SMP - two threads of execution, each with an entire core to itself - CMP

• A 2-Way SMP - two threads of execution, both threads residing on a single core - SMT

• A 4-Way SMP - four threads of execution, two threads per core, two cores operating -
CMP with SMT

These different modes of operation have some interesting side effects in relation to mem-
ory bandwidth and overall computational capability and are a focus of our work.

4It is this combination of CPU and cache die that gives the “Dual” in DCM
5[Kalla et al. 2004] and [Sinharoy et al. 2005] provide a detailed description of POWER5 written by

key members of the POWER5 design team.

§3.2 POWER5 11

3.2.3 Instruction Fetching on POWER5

It is useful for us to understand the details of instructions fetch/decode on the microprocessor,

again we quote from [Sinharoy et al. 2005, pp 508];

In SMT mode, two separate program counters are used, one for each thread. In-
struction fetches alternate between the two threads. Similarly, branch prediction
alternates between threads. In Single Threaded (ST) mode, only one program
counter is used, and instructions can be fetched for that thread every cycle.

[...]

Up to eight instructions can be fetched from the instruction cache (IC pipeline
stage) every cycle.

Recall that this ability to run separate threads of execution simultaneously on different
execution units is what makes POWER5 SMT rather than (say) Fine-grained Multithreaded.

IBM have an article available on instruction fetching and CPI analysis available on their
Developer Works website 6 which treats this topic further.

3.2.4 Thread Priority

In a multithreaded system, one thread may use a significant amount of system resources,
potentially blocking other threads. [Sinharoy et al. 2005, pp 511] Accordingly the POWER5
design provides various mechanisms to optimise resource usage and balance between threads.

Each thread has eight software controlled priority levels, some levels can only be accessed
when the processor is in privileged mode, the balance can be set from user space. When not
running, a thread is at Level 0, Levels 1 (the lowest) through to 7 (the highest) apply when the
thread is executing. While set by software, these priorities are enforced by hardware.

Electrical power is also conserved automatically by the POWER5 core. When both threads
are at Level 1 instruction decode is throttled by hardware.

3.2.4.1 Thread Priority in Linux

The Linux kernel makes use of thread priority, adjusting it up or down slightly when entering
certain sections of code. In the kernel code the more generic abbreviation HMT (Hardware
Multi Threading) is used. In spin loops for example, HMT low() is used. The kernel idle loop

will call to HMT very low() while doing nothing and HMT medium() during normal oper-
ation. Linux does not currently force a priority above HMT medium() - recall these priorities
are relative so the core still runs at full speed when it is able.

The macros defined in ./include/asm-powerpc/processor.h illustrate how special
instances of the or instruction7 are used to set thread priority

/* Macros for adjusting thread priority (hardware multi-threading) */
#define HMT_very_low() asm volatile("or 31,31,31 # very low priority")
#define HMT_low() asm volatile("or 1,1,1 # low priority")
#define HMT_medium_low() asm volatile("or 6,6,6 # medium low priority")
#define HMT_medium() asm volatile("or 2,2,2 # medium priority")
#define HMT_medium_high() asm volatile("or 5,5,5 # medium high priority")
#define HMT_high() asm volatile("or 3,3,3 # high priority")

6http://www-128.ibm.com/developerworks/power/library/pa-cpipower1
7as used this is effectively a nop

12 Processor Architectures

3.2.5 Dynamic Resource Balancing

“Depending on the situation, the POWER5 microprocessor employs one of three mechanisms
to throttle threads to perform dynamic resource balancing.”[Sinharoy et al. 2005, pp 511]

Firstly, in addition to the software control over priority level mentioned above, the POWER5
core can temporarily adjust the level of a thread to throttle its execution. Such a decision is

based on instruction completion statistics gathered from the instruction completion logic on
the core.

Secondly, the L2 miss rate for each thread is monitored and when it rises above a specified
value, instruction decode for that thread is temporarily disabled.

The final mechanism is employed when an instruction is decoded which will take a long
time to complete. For example, sync instructions or an instruction that will cause a stall due
to resource contention. Under such situations the core will flush all of the instructions for that
thread and inhibit further decodes until the instruction completes.

3.2.6 Single-threaded Operation

While designed to be used in an SMT configuration, the POWER5 cores can be placed in a ST
mode. [Sinharoy et al. 2005, pp 514] provides a cogent description of this feature of POWER5;

Not all applications benefit from SMT. Applications whose performance is execution-
unit-limited or which are consuming all of the POWER5 chip memory bandwidth

will not see additional performance by having two such threads executing on
the same processor. For this reason, POWER5 systems support single-threaded
execution mode. In single-threaded mode, a POWER5 system makes all of the
rename registers, issue queues, the Load Reorder Queue, and the Store Reorder
Queue available to the active thread. This gives the single active thread more
rename registers to use, allowing it to achieve higher performance levels than a
POWER4 system at equivalent frequencies. Software can dynamically change a
processor between single-threaded and SMT modes.

3.2.7 Memory Subsystem on POWER5

The memory subsystem plays a significant role in determining the computers performance
characteristics.

In examining the POWER5 memory system, it is useful to contrast it with that of POWER4

(Figure 3.2) that preceded it. Table 3.1 shows this evolution and is drawn from information in
[Papermaster et al. 1998], [Tendler et al. 2002], [Sinharoy et al. 2005] and [DeMone 2004].

In examining the information in Table 3.1 and Figures 3.1 and 3.2 it can be seen that in
POWER5 cache has been moved closer to the core. Further main memory is now accessed
through a separate channel to L3, these two changes along with other tweaks have brought a
significant reduction in latency and increase in bandwidth.

We now examine the memory subsystem in a more detail, the reader may wish to refer
to Figure 3.1 as we proceed. Note that where bandwidths or latencies are quoted as absolute
figures they assume a 1.65GHz core frequency.

3.2.7.1 Cache on POWER5

There are three levels of cache on a POWER5 system, L1, L2 and L3. On systems with mul-
tiple DCMs, cross fabric reads of cache are possible which are referred to as L2.75 and L3.75
accesses.

§3.2 POWER5 13

POWER4 POWER5

L1 ICache 64kB Direct Mapped 64kB 2-way associative

L1 DCache 32kB 2-way associative 32kB 4-way associative

L2 Cache 1.44MB 8-way associative 1.92MB 10-way associative
12 cycle latency 13 cycle latency

L3 Cache 32MB 8-way associative 36MB 12-way associative
123 cycle latency 87 cycle latency
Clocked at 1/3 CPU frequency Clocked at 1/2 CPU frequency

Memory ≃ 4GB per die ≃ 16GB per die
351 cycle latency 220 cycle latency

Table 3.1: POWER4 / POWER5 Memory characteristics

L2

Proc Proc

Fabric

L3

Mem Ctrl

Memory

L2

Proc Proc

Fabric

L3

Mem Ctrl

Memory

Die
�

Die
�

Figure 3.2: POWER4 Block Diagram

Each core has its own L1 cache, hence there are a pair per DCM. They operate at the
processor frequency and have hardware coherency. The L1 Instruction cache is 32kB in size,
128 byte lines with two way associativity and a FIFO replacement policy. The L1 Data cache is
32kB in size, 128 byte lines, four way set associative with LRU, store through. Latency is two
cycles, bandwidth ≃ 26GB/s.

There is a single L2 cache per DCM of 1.92MB comprised of three slices of 640kB each. L2
is 10 way set-associative with an LRU replacement policy and 128B line size.

Each core on the DCM has a separate port to each of the three L2 slices with a latency of
13 cycles and a theoretical peak bandwidth of ≃ 52GB/s. Additionally each slice has inde-
pendent access to the fabric, other cores in the system can read/write data to the L2 directly.
These L2.75 operations have a latency of around 140 cycles and a peak theoretical bandwidth
of ≃ 39GB/s L2 to Fabric and ≃ 79GB/s Fabric to L2.

Each DCM has it’s own L3 comprised of three slices of 12MB each for a total of 36MB. The
L3 is 12 way set-associative, LRU replacement and has a 256 byte line size. The L3 acts as a
victim cache of L2 and has one read and one write port to each L2 slice and a port to the fabric.
Latency to the local CPUs is some 87 cycles, 140 cycles for an L3.75 access from another DCM.
Peak bandwidth is ≃ 13GB/s read and write.

14 Processor Architectures

3.2.7.2 Main Memory on POWER5

Main memory on POWER5 systems is DDR or DDR2 based depending on the model in ques-
tion. Here we confine ourselves to the arrangement on the OpenPOWER 720.

Each processor card contains half the system memory, thus a 32GB system has 16GB at-
tached to each DCM. Referring to Figure 3.1 it can be seen that each card has eight 266MHz

DDR ECC memory modules installed in pairs, two pairs per memory controller.
The SMI-II memory controllers straddle two asynchronous clock domains, the processors’

on one side, DDR memory on the other. The interface to the core itself has an eight byte wide
read port and a two byte wide write port and operates at half the core frequency. The interface
on the memory side is eight bytes wide and operates at the DRAM frequency8

On the OpenPOWER720 the SMI-II’s are configured to share the physical address space,
thus sequential reads and writes are interleaved across the available DIMMs yielding a theo-
retical per DCM bandwidth of 10.41GB/s.

The memory controllers also perform background operations related to ECC and reliabil-

ity functions on the system.

8the internal logic in this side of the SMI-II operates at twice the DRAM clock

Chapter 4

Experimental Setup

4.1 Systems Used

Except where noted otherwise, all results discussed in the following sections were produced
on an IBM OpenPOWER 720 system. While DCS have two such systems of their own our
work primarily utilised a system made available at IBM’s OzLabs facility. This avoided incon-
venience to other students using the DCS machines as well as providing a relatively known
“background” workload for our measurements.

The machine in question jago has two CPU cards as shown in Figure 3.1, each with a

1.65GHz CPU and 16GB of RAM. This provides a total of four POWER5 CPUs and 32GB of
RAM in a single system image1.

For our barrier/locking experiments a larger machine was used to give a greater range of
processor options. This machine, fandango22, is an eight POWER5 processor IBM pSeries 570
with 16GB RAM.

Architecturally the two systems are all but identical, built as they are from DCM building
blocks as shown in Figure 3.1.

4.2 Processor & Memory Affinity under Linux

Linux has well thought out support for both processor and memory affinity both of which we
rely on in our work.

SMP: DCM1 DCM0

CMT: Core1 Core0 Core1 Core0

SMT: SMT1 SMT0 SMT1 SMT0 SMT1 SMT0 SMT1 SMT0

Bitmask: 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x01

CPU ID: 7 6 5 4 3 2 1 0

Table 4.1: Layout of CPU bitmask for four way OpenPOWER720

1These systems support partitioning into multiple system images, something we did not make use of
in our work

2It is an OzLabs tradition to name PowerPC machines with names ending in “go”

15

16 Experimental Setup

4.2.1 Processor Affinity

From the user or application standpoint Linux takes a simple approach to dealing with differ-
ent combinations of SMT, CMP and SMP - everything is considered a CPU. Internally of course
the scheduler is aware of the subtleties of both SMT and CMP and endeavours to assign work
accordingly.

Processors are numbered based on an underlying bitmask structure, that is to say a system
can have CPU0, CPU1, CPU4 and CPU5. This bitmask gives some recognition to the underly-
ing layout of CPU cards, dies, cpus and threads. In the case of the OpenPOWER720 however
it is pretty straightforward as seen in Table 4.1.

4.2.2 Setting Processor Affinity

There are two approaches to setting processor affinity under Linux that we used in our work.

The first is to use the taskset utility from the command line. Part of the sched-utils3

package, it allows the user to run a command and limit it to a particular set of CPUs. Thus on
jago, running taskset 0x55 foo would invoke the command foo and confine it to using
the SMT0 threads on each of the four cores.

While taskset is useful for quick tests it doesn’t implicitly bind a thread of execution
within the target application to a particular CPU. The scheduler or internal actions of the
called application could cause a thread to migrate to different CPUs within the mask.

The second approach, the use of implicit calls to the setaffiniy() and getaffinity()
functions, mitigates this problem by tying the calling thread to the CPU specified. For our
work the procedure in Figure 4.1was used.

/* Master Thread */
for each thread {

/* Create and start threads */
create_thread(thread_id, cpu_mask);

}
/* Now wait for worker threads to finish */
join();

/* Within each thread */
create_thread(thread_it, cpu_mask) {

/* Bind thread to required CPU, quit on failure */
setaffinity(cpu_mask);

/* Allocate and touch memory to ensure affinity */
allocate_memory();
touch_memory();

/* Run codes */
do_work();

}

Figure 4.1: Pseudo code for setting processor affinity

3http://freshmeat.net/projects/sched-utils

§4.3 Threads, Cores, Dies, Oh My! 17

4.2.3 Memory Affinity

By default memory affinity is handled automatically - memory requested by a thread of exe-
cution will be allocated from the node closest the CPU on which it is running when the page

is first touched. In recent kernels4 this can be over-ridden but the interfaces to handle this,
particularly to user space, are still somewhat in flux.

4.3 Threads, Cores, Dies, Oh My!

As discussed in §1.1 our work focussed on investigating the different combinations of SMP,
CMP and SMT. In practice this meant we had one combination of SMP/CMP/SMT when
utilising eight processor threads, three combinations of SMP/CMP/SMT when utilising four
threads, three when utilising two threads and one for a single processor thread of execution.

We refer to a single core as being either in SMT mode (two threads) or non-SMT mode
(one thread). This latter case we will refer to as ST for Single Threaded mode in most cases for

grammatical simplicity.

We arrived at the following naming scheme to (hopefully!) make the configuration in use
clear. The reader may wish to refer back to Section 3.2.1 and the diagram at Figure 4.2 as they
proceed through the following.

The four pieces of information we needed to convey were;

1. Total number of threads - denoted t - for the OpenPOWER 720 this is between one and
eight

2. Number of SMT threads per CPU - denoted s - either one (SMT disabled - ST) or two
(SMT enabled) for POWER5

3. Number of CPU cores in use for each die - denoted c - either one or two for POWER5

4. Number of dies/DCMs in use - denoted d - for the OpenPOWER 720 this is also one or
two

Thus for the OpenPOWER 720 we arrived at eight different combinations;

• t8-s2-c2-d2 - Eight CPU threads active using both DCMs, both CPUs within each DCM
enabled and SMT enabled on all four CPUs. This is essentially the “full” configuration
for the OpenPOWER 720

• t4-s1-c2-d2 - Four CPU threads active using both DCMs, both CPUs within each DCM in
use, SMT disabled on both CPUs (ST). This is nominally the most balanced four thread
configuration.

• t4-s2-c1-d2 - Four CPU threads active using both DCMs, only one CPU within each
DCM in use, SMT enabled on each active CPUs (ST). This is a less balanced four thread
configuration than the one above.

• t4-s2-c2-d1 - Four CPU threads active using one DCM, both CPUs within that DCM en-
abled, SMT enabled on both CPUs. This is the “pathological” four thread configuration

- the threads of one entire DCM remains idle.

• t2-s1-c1-d2 - Two CPU threads active utilising two DCMs, only one CPUs within each
DCM enabled and SMT disabled (ST). This is most balanced two thread configuration.

4linux-2.6.17 or so onwards

18 Experimental Setup

• t2-s1-c2-d1 - Two CPU threads active utilising one DCM, both CPUs within that DCM
enabled but SMT disabled. This configuration leaves the second DCM largely unused.

• t2-s2-c1-d1 - Two CPU threads active utilising one DCM, one CPU within the DCM
enabled, SMT enabled. This configuration leaves both the second CPU on the active
DCM unused as well as the the second DCM largely unused.

• t1-s1-c1-d1 - One CPU thread active utilising one DCM, one CPU within that DCM
enabled, SMT disabled. This configuration leaves both the second CPU on the active
DCM unused as well as the the second DCM largely unused.

Figure 4.2 illustrates these different combinations.
The naming scheme assumes that there is no difference between cores and threads on a

particular CPU. That is to say that Core 0 and Core 1 will perform identically if run in isolation
and similarly that SMT0 and SMT1 within a core will perform identically if run with the other

SMT thread inactive.

Core 1

smt0

Core 0

DCM 1

Core 1 Core 0

DCM 0

t8-s2-c2-d2

smt1

smt0

smt1

smt0

smt1

smt0

smt1

Core 1

smt0

Core 0

DCM 1

Core 1 Core 0

DCM 0

t4-s1-c2-d2

smt0 smt0 smt0

smt1 smt1 smt1 smt1

Core 1

smt0

Core 0

DCM 1

Core 1 Core 0

DCM 0

t4-s2-c1-d2

smt1

smt0

smt1

smt0

smt1

smt0

smt1

Core 1

smt0

Core 0

DCM 1

Core 1 Core 0

DCM 0

t2-s1-c1-d2

smt1

smt0

smt1

smt0

smt1

smt0

smt1

Core 1

smt0

Core 0

DCM 0

t4-s2-c2-d1

smt1

smt0

smt1

Core 1

smt0

Core 0

DCM 0

t2-s2-c1-d1

smt1

smt0

smt1

Core 1

smt0

Core 0

DCM 0

t1-s1-c1-d1

smt0

smt1 smt1

Core 1

smt0

Core 0

DCM 0

t2-s1-c2-d1

smt0

smt1 smt1

Figure 4.2: The eight different threading combinations described in §4.3 shown diagrammati-

cally

§4.4 Comparing SMT and ST - “SMT vs ST pairs” 19

4.4 Comparing SMT and ST - “SMT vs ST pairs”

It should now be evident that on an eight way system like jago we have four combinations
that will show the difference between SMT and non-SMT (ST) operation.

• t8-s2-c2-d2 vs t4-s1-c2-d2

• t4-s2-c1-d2 vs t2-s1-c1-d2

• t4-s2-c2-d1 vs t2-s1-c2-d1

• t2-s2-c1-d1 vs t1-s1-c1-d1

We will refer to these as our “SMT vs ST pairs” in coming sections and use these compar-
isons to assess the impact, positive or otherwise, of SMT for the trial in question.

4.5 Operating System

The systems in use ran the PowerPC64 “Etch” release of Debian GNU/Linux. Except where
noted, we built our own Linux 2.6.18 kernel and made use of it for all runs.

No particular effort was made to quiesce the system in use other than to ensure that no
other users were logged in.

4.6 Compiler

In consultation with colleagues it was decided to run a recent though pre-release version of
gcc in order to ensure we had the most recent OpenMP support available. In practice this
meant all our work with the exception of NAS was built with gcc (GCC) 4.2.0 20060816
(experimental)with the NAS work (which required FORTRAN) being compiled with gcc
(GCC) 4.2.0 20061024 (prerelease)

While both versions were not production versions it was known that they had passed
sufficient regression testing for us to proceed with a high degree of confidence.

The only flags used with the compiler of significance were -O3 and -Wall to enable opti-

misation and show all compilation warnings respectively.

4.7 Automation

Some effort was made to automate the process of running benchmarks, collecting and analysing
data and ensuring results were backed up across several locations.

For the most part this consisted of bash scripts that would run the jobs required, pipe the

resultant output and errors to log files with defined names and generally allow us to do other
things while the trials were completed. As some sequences of experiments took over six hours
to complete, this was a significant issue.

These scripts will be made available along with the other files from this research on the
eScience projects website.

20 Experimental Setup

4.8 Thread to CPU affinity

For both the modified STREAM benchmarks (§4.9.2) and our Barrier/Locking tests (§4.10)
some effort was put into ensuring that a thread of execution within the benchmark was tied
to a particular CPU. Our code was structured such that a particular thread would always map
to the same CPU for subsequent trials.

This became particularly important in the context of the round-robin lock benchmarks
(§4.10.3) as it meant that a consistent pattern of CPU use was established.

When the benchmark was invoked a bit mask as described in §4.2 was passed that deter-
mined the CPU(s) to use and hence the total number of threads.

4.9 STREAM Benchmark

4.9.1 Baseline Setup

Our initial tests with STREAM used a completely unmodified version run multiple times in
lieu of using OpenMP to give us a feel for the opreation of the benchmark. The taskset
utility was used to provide processor affinity for each instance. This method was used to
gather the data presented in Table 6.1

STREAM was then built with OpenMP support using the gcc compiler and a similar set
of tests run. taskset was again used to set overall affinity for the instance of STREAM run,
multiple threads being created by the OpenMP parallel for directives in the code.

While this approach worked satisfactiorally we were left at the mercy of OpenMP’s mem-
ory and processor affinity decisions. To give finer grained control over same we elected to
modify STREAM as detailed in the following section.

4.9.2 Details of changes

Broadly, our changes to STREAM were as follows

• Addition of command line options to allow processor affinity to be specified, the size of
the arrays and the number of repeats.

• Make use of the pthread threading library for parallelism.

• Implicit use of Linux’s low level setaffinity() function. This provided for a consis-

tent match between thread number and the underlying CPU.

• Modifications to the memory allocation code to evenly allocate memory across the pro-
cessors in use.

• The output from a successful run was expanded to report:

1. Number of threads and CPU bitmask

2. Size of array in elements and MB

3. Number of repeats (’N’)

4. One and Five minute load average for system

5. Start and End time of runs (seconds since epoch)

6. For each of the four codes (copy, scalar, add and triad) the maximum, average and
minimum bandwidth and times measured

§4.10 Barrier & Lock Benchmarks 21

• Synchronisation between threads to ensure that a run was completed by all threads
before starting the next. This reduced the “noise” on our data by preventing any single
thread to suddenly see more of the available machine capacity because other threads
had completed early.

In total this was some 600+ lines of code all told, about 50% more than the standard ver-
sion. This modified source will be made available on the ANU eScience projects website.

4.9.3 Main Memory & Cache Runs

The scripts used to automate the collection of data from STREAM would perform all the runs
of a particular memory size for each thread combination before moving on to the next memory

size.

Hence when referring to graphs such as Figure 6.1, time proceeds down the page (most
threads to least threads) then across the page left to right (smaller data sets first)

This approach was chosen to minimise the impact any short term loads on the system
would have on a the results for a particular thread combination.

4.10 Barrier & Lock Benchmarks

To allow us to benchmark low level lock and barrier primitives we wrote a modest test suite.

The basic framework for this code was the modified STREAM source modified as described in
Section 4.9). This avoided having to re-write the command line parsing, collection, processor
affinity and summary/output codes.

We tested two primitives, an execution barrier and a mutex style round-robin lock. For
each we coded up a version using relevant pthreads functions and a version using the low
level atomic instructions directly in assembler. We examine these codes in more detail in
4.10.2 and 4.10.3.

4.10.1 Time Keeping

volatile inline u64 readtb(void)
{

u64 tb;

asm volatile ("mftb %0" : "=r" (tb) :);

return tb;
}

double mysecond()
{

/* Constant shown is correct for fandango2 */
return ((double)readtb() * 5.31793260052222e-09);

}

Figure 4.3: Time keeping functions used for barrier and lock experiments

22 Experimental Setup

While our modified STREAM source provided an overall starting point we required a very
lightweight timekeeping function as the conventional approach of a call to gettimeofday()
would take longer than the code being measured.

The PowerPC Architecture defines a 64 bit Time Base register available in each CPU which
on SMP configurations is guaranteed to be synchronised. In the case of POWER5 these are
clocked at around 200MHz giving a resolution of ≃5ns. We made use of it as shown in Figure
4.3.

While crude, the code seemed to work quite well. A further optimisation step would be to
simply store direct timebase values and do the final floating point calculation once at the end

of the runs.
We note that there has been some recent work on improving the availability of high-

resolution timing as part of the standard GNU glibc library. It may be that custom code isn’t
required in future work which will also reduce platform dependence.

4.10.2 Barrier Codes

Two barrier codes were implemented and benchmarked.
The first, shown in Figure 4.4 used a shared counter locked by pthread mutex lock

and pthread mutex unlock calls. While more efficient schemes exist, such as the atomic
decrement approach, this code was thought to be representative of pthread based barrier im-
plementations in real world applications.

In the closing days of our work it was realised that a return statement should have been
added after the call to pthread mutex unlock() in the if statement. As shown there is

a slim chance that the second call to pthread mutex unlock() could result in the mutex
being unlocked when it was owned by a second thread of execution. We did not have time to
repeat our trials but would not expect any great difference, as it will merely mean the counter
misses an increment on very rare occasions.

void thread_sync(int t_id)
{

pthread_mutex_lock(&thread_sync_count_mutex);

thread_sync_counter++;

if (thread_sync_counter == threads_requested) {
if (pthread_cond_broadcast(&thread_sync_count_cv) != 0) {

fprintf(stderr, "cond_broadcasts failed!!");
}
thread_sync_counter = 0;
pthread_mutex_unlock(&thread_sync_count_mutex);

}
else {

pthread_cond_wait(&thread_sync_count_cv,
&thread_sync_count_mutex);

}
pthread_mutex_unlock(&thread_sync_count_mutex);

}

Figure 4.4: thread sync function

The second barrier implementation is based on a shared counter scheme. It utilises an
atomic decrement function hand coded in assembler as shown in Figure 4.5.

§4.11 NAS Parallel Benchmarks 23

It is based on code developed as part of the ANU SPARC-Sulima project.

4.10.3 Round-Robin Lock Codes

The two locking benchmarks followed the same basic model. A global variable was declared
that was incremented by each thread of execution in term - hence the lock was passed round
robin style between each thread.

Each thread would spin until the the global variable was equal to its ID whereupon it
would try and acquire the lock (waiting if necessary), increment the counter, check for wrap-
ping (via a modulo operation) then free the lock. The two high level functions differed only in

which locking function was called and global variables used. They are shown in Figure 4.6.

We reiterate that the round-robin codes were written in a manner that ensured that the
lock passed from CPU thread to CPU thread in a consistent pattern.

While the pthread version (obviously) used the pthread libraries pthread mutex lock
and pthread mutex unlock functions, the assembler version used our own implementa-
tions as shown in Figure 4.7. Note that in the interests of clarity this code is edited slightly,
mostly to remove the GNU compiler specific semantics for register selection and such like.

4.10.4 Overall Benchmark

The code that was then used to run each of the four tests was straightforward.

Referring to Figure 4.8 we have t id as the thread ID, counting from zero to number of
threads. C was set to to 0, 1, 2 or 3 depending on which code was being run. N was the number
of locks or barriers to time, this value is given in the results section. Finally, NTIMES was
the number of times the codes were run and hence averaged over, the relevant value is also
provided with the results. function under test(t id) was the lock or benchmark being
evaluated.

After the codes were run, the times stored in start times[] and end times[] were
processed to arrive at a minimum, maximum and average for each code. The times calculated
and output were per thread not the total runtime for that code.

These times were then processed further when plotted, in most cases being divided by the
number of threads in operation to arrive at a figure that was normalised by the number of
threads in use. This removed the bias that would have otherwise occurred from a barrier or
lock naturally taking longer when more threads are in operation.

4.11 NAS Parallel Benchmarks

By comparison to the effort involved with STREAM and our Barrier/Locking benchmarks,
running NAS was an exercise in relative simplicity.

4.11.1 Basic Setup

The NAS benchmarks were configured to use a mixture of “Class A” and “Class B” bench-
marks, the latter being chosen when the runtime of the “Class A” version was too short to
provide reasonable data. All benchmarks were Version 3.2.1

Nine benchmarks were used - ep.A, lu.A, sp.A, bt.A, lu-hp.A, is.B, mg.B, ft.B and cg.B.
These were built with gcc as described in §4.6.

24 Experimental Setup

Six runs of the nine benchmarks were completed using scripts to automate the process.
Figure 4.9 shows the basic arrangement used5. This process was then repeated a second time
to give a total of twelve runs.

5This approach and that used for data parsing inspired by the method used by Tony Breeds [Breeds
2006] in his COMP6702 work

§4.11 NAS Parallel Benchmarks 25

#define NUM_PBAR (4)

void pbarrier_init(void)
{

int i;

for (i=0; i < NUM_PBAR; i++) {
pbarrier_at_barrier[i] = threads_requested;

}

for (i = 0; i < MAX_CPUS; i++) {
pbarrier_n_barrier_calls[i][0] = 0;

}
}

void userspace_atomic_dec(long *var)
{

asm volatile (

loop: ldarx r1, 0, var /* Get current value of var */
/* with address reservation */

addic r1, r1, -1 /* Decrement */

stdcx. r1, 0, var /* Attempt to store back
with address reservation */

bne- loop /* Retry if we lost reservation */
);

}

void pbarrier(int t_id)
{

int nbarrier;
int spin_catch = 100000000;

nbarrier = pbarrier_n_barrier_calls[t_id][0] % NUM_PBAR;

/* Only thread 0 gets to set up counter for next barrier */
if (t_id == 0) {

pbarrier_at_barrier[(nbarrier + 1) %NUM_PBAR] =
threads_requested;

}

userspace_atomic_dec(&pbarrier_at_barrier[nbarrier]);

pbarrier_n_barrier_calls[t_id][0]++;

/* spinlock */
while (pbarrier_at_barrier[nbarrier]) {

if (spin_catch -- == 0) {
fprintf(stderr, "thread %d lockedup\n", t_id);
pbarrier_at_barrier[nbarrier] = 0;
return;

}
}

}

Figure 4.5: Code snippets for the atomic dec based barrier test

26 Experimental Setup

void mylock_do_lock_asm(int t_id)
{

while(mylock_asm_current_thread != t_id) {}

set_lock(&mylock_atomic_int);

mylock_asm_current_thread += 1;
mylock_asm_current_thread %= threads_requested;

clear_lock(&mylock_atomic_int);
}

void mylock_do_lock_pthread(int t_id)
{

while(mylock_pthread_current_thread != t_id) {}

pthread_mutex_lock(&mylock_mutex);

mylock_pthread_current_thread += 1;
mylock_pthread_current_thread %= threads_requested;

pthread_mutex_unlock(&mylock_mutex);
}

Figure 4.6: Code snippets for the two lock functions tested

void set_lock(int *lock)
{

asm volatile (
loop: lwarx r1, 0, lock /* Load lock value into r1 */

/* with addr. reservation */
cmpwi r1, 0 /* See if it’s zero */
bne- loop /* If not, spin */
li r1, 1 /* Want to set lock to 1 */
stwcx. r1, 0, lock /* Do store with addr. */

/* reservation check */
bne- loop /* Retry if we lost the */

/* reservation */
isync /* Lightweight sync */

);
}

void clear_lock(int *lock)
{

asm volatile (
sync /* Heavyweight memory sync */
li r1, 0 /* Get a zero */
stwx r1, 0, lock /* And store in the lock */

);
}

Figure 4.7: Assembler for our low level lock functions set lock and clear lock

§4.11 NAS Parallel Benchmarks 27

for (k = 0; k < NTIMES; k++) {
start_times[0][t_id][k] = mysecond();

for (i = 0; i < N; i++) {
function_under_test(t_id);

}

end_times[0][t_id][k] = mysecond();
}

Figure 4.8: Typical wrapper code used to run each barrier or lock test

for run in {1,2,3,4,5,6} ; do
for thread_mask in {ff,55,33,0f,05,03,11,01} ; do

for benchmark in {ep.A, lu.A, sp.A, bt.A, lu-hp.A,
is.B, mg.B, ft.B, cg.B} ; do

filename = $date + $benchmark + $threads + $run
taskset $thread_mask $benchmark > $filename

done
done

done

Figure 4.9: Pseudo wrapper code used for NAS runs

28 Experimental Setup

Chapter 5

A Performance Model for

Round-Robin Locking

5.1 Background

Section 4.3 describes the different thread combinations available to us on jago. Section 4.10.3
details the benchmark written to allow us to evaluate round-robin locking performance.

The choice of round-robin locking and the known relationship between a thread of execu-
tion in the benchmark and a particular thread on the CPU allows us to put model the likely
behaviour of the benchmark.

5.2 Description of model

The operation of the round-robin lock is heavily dependent on the efficiency of shared memory
operations, in particular the transfer of cache lines containing the locking variable. The char-
acteristic of the lock is each thread updating the counter in turn while the remaining threads
read the counter in a spin loop.

We can reasonably argue that the dominant time factor in the process of passing the lock
is passing the cache line containing the shared counter (c.f. §4.10.3) between threads of ex-
ecution. For the system under test, this process of passing the counter can occur over three
different paths, each with increasing latency characteristics. In Figure 5.1 the three different
paths are shown as a thin green line, a thicker blue line and a still thicker red line.

We assign each of these transfers or latencies a different weight. The thin green line rep-

resents the time delay for the lock to be transferred between SMT threads on the same core,
ls. The blue line indicates an inter-core transfer between threads on the same DCM/die, lc.
Finally the red line denotes a transfer between threads on two different DCM/die, l f .

Figure 5.1 illustrates the seven different thread combinations that can occur (the single
thread case is irrelevant in this case) and the “path” taken by the lock from thread to thread.
The dashed line indicates the “path” taken by the lock at the start of the next iteration.

Thus at the start of an iteration of the t4-s1-c1-d2 case, the thread on smt0, core0, DCM1
acquires the counter from where it was on DCM0 (smt1, core0). Once acquired is updated
and the cache line passes to smt1 on the same code and DCM. It is again updated before
transferring across to smt0, core0 on DCM0, updated then transferred to smt1 on the same
core which completes an iteration. Again we reiterate that this concept of “transfer” is meant
more in a conceptual sense.

29

30 A Performance Model for Round-Robin Locking

Core 1

smt0

Core 0

DCM 1

Core 1 Core 0

DCM 0

t8-s2-c2-d2 smt1

smt0

smt1

smt0

smt1

smt0

smt1

Core 1

smt0

Core 0

DCM 1

Core 1 Core 0

DCM 0

t4-s1-c2-d2

smt0 smt0 smt0

smt1 smt1 smt1 smt1

Core 1

smt0

Core 0

DCM 1

Core 1 Core 0

DCM 0

t4-s2-c1-d2 smt1

smt0

smt1

smt0

smt1

smt0

smt1

Core 1

smt0

Core 0

DCM 1

Core 1 Core 0

DCM 0

t2-s1-c1-d2 smt1

smt0

smt1

smt0

smt1

smt0

smt1

Core 1

smt0

Core 0

DCM 0

t4-s2-c2-d1 smt1

smt0

smt1

Core 1

smt0

Core 0

DCM 0

t2-s2-c1-d1 smt1

smt0

smt1

Core 1

smt0

Core 0

DCM 0

t2-s1-c2-d1

smt0

smt1 smt1

Figure 5.1: Permutations of Round Robin Locking

5.3 Putting into practice

From the above we derive a simple equation for each thread combination to estimate the total
latency per iteration, these are shown in Table 5.1

Referring to the documentation for the POWER5 core we can attribute a cycle count and
hence time for each latency.

• ls - transfer between threads is an L1 hit - 2 cycles

• lc - transfer between cores on same DCM is an L2 hit - 13 cycles

• l f - transfer between threads on different DCMs is a cross fabric “L2.75” hit - 140 cycles

We took the cycle timing for jago of 0.606ns (at 1.65GHz) and arrived at Table 5.2 which
we have ordered from lowest cycles per thread to most cycles per thread.

We compare these theoretical figures with those measured experimentally in Section 6.2.4

5.4 Atomic update overheads

The atomic update operation is the second “time sink” in the process, in our model we assume
that this operation is constant time for each transaction. In practice however its completion
time will vary through coherency operations.

§5.4 Atomic update overheads 31

While we have not done so, we would observe that expanding the model to account for
this would be a useful area of future work.

Thread arrangement Estimate of Total Latency

t8-s2-c2-d2 4ls + 2lc + 2l f

t4-s1-c2-d2 2lc + 2l f

t4-s2-c1-d2 2ls + 2l f

t2-s1-c1-d2 2l f

t4-s2-c2-d1 2ls + 2lc

t2-s2-c1-d1 2ls

t2-s1-c2-d1 2lc

Table 5.1: Formulae to estimate total latency of round-robin locking for each threading com-

bination

Thread arrangement Total Cycles (ns) Cycles Per Thread (ns)

t2-s2-c1-d1 4 (2.42) 2 (1.21)

t4-s2-c2-d1 30 (18.18) 7.5 (4.55)

t2-s1-c2-d1 26 (15.76) 13 (7.88)

t8-s2-c2-d2 314 (190.28) 39.25 (23.79)

t4-s2-c1-d2 284 (172.10) 71 (43.03)

t4-s1-c2-d2 306 (185.44) 76.5 (46.36)

t2-s1-c1-d2 280 (169.68) 140 (84.84)

Table 5.2: Estimated latency in cycles and nanoseconds on basis of figures for POWER5 at

1.65GHz

32 A Performance Model for Round-Robin Locking

Chapter 6

Results & Discussion

This chapter describes the results from our experiments with STREAM, our Barrier/Locking
Codes and the NAS Parallel Benchmarks. We have aimed to use as consistent terminology as
possible in presenting these results, the reader may wish to refer back to Sections 4.3 and 4.4
while reviewing our findings.

6.1 STREAM

Our experimental setup for STREAM is detailed in Section 4.9

We did runs of STREAM in three different ways. Firstly a “sniff test” was performed to
allow us to validate our basic setup. Our second and main series of runs stretched from just
below 5GB to over 25GB in size. The majority of our focus is on these tests that explore main
memory bandwidth. Thirdly we used our modified version of STREAM in a series of runs
sized 1.5GB down to 1MB to investigate cache bandwidth.

Published STREAM results tend to focus on peak bandwidth figures. However for our
results we have confined our treatment to average1 bandwidth for the most part as this has
more relevance to the real world.

6.1.1 Initial trials

To gain experience with STREAM in practice, we did runs of an unmodified version without
utilising OpenMP. Based on suggestions made in [McCalpin 2006], these runs were performed
by starting multiple simultaneous instances of STREAM and scaling the results of the final
instance.

We achieved some degree of memory and processor locality by using the taskset utility
to specify a processor for each instance. It is worth reiterating that in this case processor could
mean either a physical CPU or SMT thread on a physical CPU.

We completed several runs for each thread combination to ensure there was minimal vari-
ance between them. Each run was completed with an array size of 20,000,000 which translated

to some 460MB of memory usage. Our results are tabulated in Table 6.1 and were found to be
within 8% of the official results (c.f “Standard” figures in Table 6.2). The official results in Table
6.2 made use of a slightly different configuration - utilising the IBM XLF fortran compiler, an
earlier Linux kernel and quoting best rather than average figures.

Encouraged that we were on the right track, we proceeded with more involved experi-
ments.

1unless otherwise noted our average is an arithmetic mean

33

34 Results & Discussion

jago Copy Scale Add Triad

Threads avg MB/s avg MB/s avg MB/s avg MB/s

t1-s1-c1-d1 2656 2395 3310 3336

t2-s2-c1-d1 2955 2856 3796 3812

t2-s1-c2-d1 3027 2956 3916 3947

t2-s1-c1-d2 5216 4618 6258 6330

t4-s2-c2-d1 3148 3008 4014 3999

t4-s2-c1-d2 5818 5570 7164 7173

t4-s1-c2-d2 5943 5849 7563 7640

t8-s2-c2-d2 6344 5981 7928 7843

Table 6.1: Results for initial “Sniff Test” STREAM Runs

OpenPOWER720 XLF Copy Scale Add Triad

“Official” best MB/s best MB/s best MB/s best MB/s

Eight Thread - Standard 5875 5783 7439 7532

Eight Thread - Tuned 6154 6014 8611 8802

Table 6.2: “Official” figures from STREAM website

6.1.2 Main Memory Bandwidth Measurements

Having established that STREAM was operating as expected we proceeded to do a sequence
of runs for memory set sizes from approximately 4.5GB up to just over 25GB. At the low end
4.5GB would ensure that we were well clear of cache effects and at the high end that we did
not run the risk of paging to disk (recall jago has 32GB of RAM - c.f. §4.1).

6.1.2.1 Main Memory Bandwidth - non-SMT cases

For clarity, Figure 6.1 shows data from a subset of these initial runs - runs without SMT enabled

on the CPUs. Recalling the nomenclature explained in Section 4.3 the four thread case utilises
both CPU cores on both of the system’s DCMs. There are two permutations of two thread
operation, one utilising a single CPU from the two DCMs, the second both CPUs on a single
DCM only. Finally the single thread case makes use of a single CPU on one DCM.

The single thread case, unsurprisingly, shows the lowest bandwidth with a consistent re-
sult of some 2.7GB/s for all the data set sizes tested. A slight downward trend is observed

for runs over 16GB where the average bandwidth falls to 2.665GB/s, we conject this is a side
effect of an increasing number of accesses coming across the fabric to the core from the second
DCMs memory.

The two thread case that utilises a both CPUs on a single DCM achieves just under 3GB/s
for runs below the 15GB mark (2.95GB/s) before increasing to 3.05GB/s as both memory ar-
rays are utilised. Compared with the single thread case, this is an increase in bandwidth of
between 9% and 12%. This modest increase suggests that we are approaching the single DCM

bandwidth limit.

We propose some future work in Section 7.2.2 that will allow these first two conclusions
to be investigated further.

§6.1 STREAM 35

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 25 20 15 10 5

B
an

dw
id

th
 G

B
/s

Array Size (GB)

STREAM/pthread COPY Bandwidth results - Run 20061009c

t4-s1-c2-d2
t2-s1-c1-d2
t2-s1-c2-d1
t1-s1-c1-d1

Figure 6.1: STREAM “Copy” Runs showing main memory performance without SMT

The two thread case utilising both DCMs shows a consistent figure of 5.35GB/s. As ex-

pected this is approximately double that of the single (one DCM) thread case as we now have
both memory subsystems operational.

Finally, the four thread case shows the greatest average bandwidth at 5.86GB/s which is
double the two thread, single DCM case until the uptick at 15GB where the ratio drops to a
little under double due to the single DCM case getting a little faster at that point.

6.1.2.2 Main Memory Bandwidth - SMT cases

We now refer to Figure 6.2 which shows the four data sets discussed above in addition to the
four cases with SMT enabled. This yields us one eight thread case, two more four thread cases
and an additional two thread case to those shown in Figure 6.1.

The eight cases shown underscore that perhaps unsurprisingly our bandwidth improves
markedly whenever two DCMs are in use. With a single DCM we only just exceed 3GB/s,
with two DCMs operational we range from 5.4GB/s up to 5.9GB/s depending on the number
of threads.

The eight thread run is about 50MB/s (0.9%) faster than the corresponding four thread

run (t4-s1-c2-d2) suggesting that SMT does enable a few more transactions out of the memory
subsystem. At 5.9GB/s the eight thread case also represents our fastest figure for the “Copy”
benchmark making it some 28% of the theoretical bandwidth for two DCMs (c.f. §3.2.7.2) .
At least part of this gap can be attributed to our 1:1 read/write ratio - the theoretical figure
apparently assuming a 2:1 ratio.

Contrasting the four thread two DCM SMT based run with four thread two core two DCM

36 Results & Discussion

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 25 20 15 10 5

B
an

dw
id

th
 G

B
/s

Array Size (GB)

STREAM/pthread COPY Bandwidth results - Run 20061009c

t8-s2-c2-d2
t4-s2-c1-d2
t4-s2-c2-d1
t2-s2-c1-d1
t4-s1-c2-d2
t2-s1-c1-d2
t2-s1-c2-d1
t1-s1-c1-d1

Figure 6.2: STREAM “Copy” Runs showing main memory performance

run (t4-s1-c2-d2 with t4-s2-c1-d2) we see the SMT case producing a bandwidth figure just 2%
slower.

A similar comparison between the single DCM two thread cases (t2-s1-c2-d1 and t2-s2-c1-
d1) shows the SMT case is 2% slower than the Single Thread (ST) case up to the 16GB mark,
where the gap widens to be closer to 6%. We conject that in the SMT case the single core is
unable to generate enough additional load/stores to see the full benefit of the second DCM’s
memory.

Drawing a similar comparison with the single thread case, t2-s2-c1-d1 consistently has
7% higher bandwidth. Thus we infer that the SMT thread is able to generate at least some
additional load/stores.

The lower thread count runs that utilise only a single DCM illustrate a drawback of mem-
ory affinity. In these instances some benefit could be had by deliberately splitting memory
allocations across both DCMs as this would provide more aggregate memory bandwidth. In
practice this would likely only be a gain for codes that are not readily parallelised. While
we have not investigated it in detail, it is understood that libnuma allows some finer grained
control over memory allocation with just this in mind. As noted above this is discussed further
in Section 7.2.2.

6.1.2.3 Main Memory Bandwidth Per Thread

Figure 6.3 uses the same raw data as that shown in Figure 6.2 however the measured band-
width has been divided by the number of threads in use yielding a plot of bandwidth per
thread.

§6.1 STREAM 37

 0.5

 1

 1.5

 2

 2.5

 3

 25 20 15 10 5

B
an

dw
id

th
 P

er
 T

hr
ea

d,
 G

B
/s

Array Size (GB)

STREAM/pthread COPY Bandwidth Per Thread results - Run 20061009c

t8-s2-c2-d2
t4-s2-c1-d2
t4-s2-c2-d1
t2-s2-c1-d1
t4-s1-c2-d2
t2-s1-c1-d2
t2-s1-c2-d1
t1-s1-c1-d1

Figure 6.3: STREAM “Copy” Runs showing main memory performance per thread

All cases measured almost identical per-thread bandwidth between the one and two DCM
cases indicating, not unexpectedly, little negative interaction between the two DCMs memory

systems.

Highest per thread bandwidth is seen in the t1-s1-c1-d1 and t2-s1-c1-d2 cases where a
single core has access to the entire resources of its DCM.

Lowest per thread bandwidth occurs as we utilise both cores with SMT enabled, the t8-s2-
c2-d2 and t4-s2-c2-d1 cases.

Contrasting the t2-s1-c2-d1/t4-s1-c2-d2 and t2-s2-c1-d1/t4-s2-c2-d2 shows the SMT based

cases performing fractionally slower than the CMP equivalent.

6.1.3 Cache Bandwidth Measurements

STREAM is usually run with problem set sizes large enough to ensure it does not fit into
cache on the system under test making runs of 200MB or over the norm. However it can be
run with smaller set sizes and, providing there is sufficient timer resolution available, valid
results obtained.

As detailed in Section 3.2.7 we have an L2 of 1.92MB and L3 of 36MB per DCM, two DCMs
per system. DCMs snoop across the fabric into the other L2 and L3 which are informally
referred to as L2.75 and L3.75 hits. Accordingly we expected to see features in our bandwidth
plots around 2, 4, 36 and 72MB depending on the number of threads in operation.

An automated sequence of runs was completed for each thread combination on a closely
spaced range of memory sizes ranging from 1MB to 1.5GB. Each run involved between 20 and
100 full iterations through the STREAM benchmark for each size. These results are shown in

38 Results & Discussion

 50

 40

 30

 20

 15

 10

 8

 6

 4

 2
 1 10 100 1000

B
an

dw
id

th
 G

B
/s

 (
Lo

g
S

ca
le

)

Array Size (MB)

STREAM/pthread COPY Bandwidth results Run 20061009b

t8-s2-c2-d2
t4-s1-c2-d2
t4-s2-c1-d2
t2-s1-c1-d2
t4-s2-c2-d1
t2-s2-c1-d1
t2-s1-c2-d1
t1-s1-c1-d1

Figure 6.4: STREAM “Copy” Runs exposing cache bandwidths

Figure 6.4.

The resulting graphs show distinct features as we move from operating within L2/L2.75
to within L3 and L3.75 then out to main memory.

Unsurprisingly we consistently see highest bandwidth across the different thread combi-
nations while within the effective area of L2/L2.75 - under ≃4MB (1.92MB x 2). The band-
width in this region varies from just shy of 8GB/s for the single threaded case to a little under

50GB/s for eight threads.

The single DCM trials drop off slightly quicker than two DCM runs within this region as
we see the effect of more accesses going across the fabric (L2.75) than local to the DCM.

Moving out of L2/L2.75 and into L3/L3.75 two distinct “knees” are visible at around
36MB and 72MB. The two DCM cases which make more natural use of the full L3 bandwidth
and so sustain bandwidth out toward 70MB in contrast to a rapid fall off around 30MB for the
single DCM cases.

We now examine the relative bandwidth figures between different numbers of threads.

6.1.3.1 Contrasting Cache Bandwidth for different thread combinations

Figure 6.5 provides a per-thread view of bandwidth, based on the same raw data as for Figure
6.4

The results obtained within cache are in line with those seen in Section 6.1.2.3 when we
looked at a similar plot for main memory (Figure 6.3).

The thread combinations without SMT are again consistently quicker than their SMT-
enabled equivalents, an effect more noticeable in cache than main memory.

§6.1 STREAM 39

 8

 7

 6

 5

 4

 3

 2

 1
 0.8
 0.6

 1 10 100 1000

P
er

 T
hr

ea
d

B
an

dw
id

th
 G

B
/s

Array Size (MB)

STREAM/pthread COPY Bandwidth Per Thread results Run 20061009b

t8-s2-c2-d2
t4-s1-c2-d2
t4-s2-c1-d2
t2-s1-c1-d2
t4-s2-c2-d1
t2-s2-c1-d1
t2-s1-c2-d1
t1-s1-c1-d1

Figure 6.5: STREAM “Copy” Runs exposing relative cache bandwidths

6.1.4 Comparison of Copy with Scale, Add & Triad codes

Returning to our main memory trials, Figures 6.6 and 6.7 show results for the “Scale” (§2.1.2.2),
“Add” (§2.1.2.3) and “Triad” (§2.1.2.4) kernels relative to “Copy” (§2.1.2.1) for non-SMT and
SMT cases respectively. A “×” symbol is used for “Scale”, a “+” for “Add” and a “△” for
“Triad” to allow all three to be seen at once. “Copy” itself does not appear on the graph as the
other three are shown relative to it and it has been reproduced in earlier graphs - Figure 6.2.

Recall in Section 2.1.3 that STREAM uses a weight of two or three to determine the number
of memory operations performed and hence the bandwidth. This infers that our best case
figures for “add” and “triad” will be 1.5 times greater than for “copy” (3:2 ratio) and “scalar”

being the same as “copy”2

In both the SMT and non-SMT cases the “scalar” case runs slightly slower than copy indi-
cating that the additional floating point operation reduces sustained bandwidth by 1-4%. The
“scalar” results are otherwise unremarkable.

6.1.4.1 Specifics of non-SMT cases

Examining the non-SMT cases (Figure 6.6) we see an interesting feature in the single thread
case (t1-s1-c1-d1) and the two DCM two thread case (t2-s1-c1-d2). The single thread “triad”
case oscillates between 1.13 and 1.23 times the “copy” rate, the “add” case between 1.15 and
1.25 times. The period of these oscillations looks to be 8GB for these two cases - 4GB at the

higher rate followed by 4GB at the lower.

2In this we assume that the CPU won’t magically go faster if it is doing more processing per iteration...

40 Results & Discussion

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 25 20 15 10 5

B
an

dw
id

th
 r

el
at

iv
e

to
 c

op
y

ke
rn

el

Array Size (GB)

STREAM/pthread SCALE, ADD & TRIAD relative to COPY runs 20061009c

t4-s1-c2-d2
t2-s1-c1-d2
t2-s1-c2-d1
t1-s1-c1-d1

Figure 6.6: STREAM Bandwidth for “Scale”(×), “Add”(+) and “Triad”(△) relative to “Copy”

without SMT

The two thread case shows a similar oscillation, the amplitude being somewhat lower and
the period apparently double that of the single thread case. We are yet to form a reasoned
explanation for this behaviour but would note that it has been seen on a number of different

runs. The two configurations exhibiting the behaviour also happen to be the two where a
single core on each DCM has no other threads contending for the machine. The fact that these
oscillations seem to be linked to 4GB per thread boundaries may indicate some interaction
with the MMU address translation logic or the address translation buffers. We discuss this
further in §7.2.1

The remaining two cases, t2-s1-c2-d1 and t4-s1-c2-d2 have the use of both cores in com-
mon. We see these cases running at 1.25 to 1.31 times “copy”. The four thread case perhaps
exhibits a slight increase in performance in the same range of cases that the t2-s1-c1-d2 run
does, but it is nowhere near as marked. In general we would conclude that these runs merely
exhibited the variation one might expect as different threads jockey for access to the CPUs
resources.

6.1.4.2 Specifics of SMT enabled cases

Turning now to the four trials with SMT enabled (Figure 6.7) we see some slightly different
features.

The eight thread case shows a tendency to oscillate between two values with a period of
2GB or so.

The t4-s2-c1-d2 case shows the greatest consistency, in this respect it is not dissimilar to

§6.1 STREAM 41

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 25 20 15 10 5

B
an

dw
id

th
 r

el
at

iv
e

to
 c

op
y

ke
rn

el

Array Size (GB)

STREAM/pthread SCALE, ADD & TRIAD relative to COPY runs 20061009c

t8-s2-c2-d2
t4-s2-c1-d2
t4-s2-c2-d1
t2-s2-c1-d1

Figure 6.7: STREAM Bandwidth for “Scale”(×), “Add”(+) and “Triad”(△) relative to “Copy”

SMT enabled

the non-SMT equivalent case above (t4-s1-c2-d2) though the latter is about 5% faster as one
might expect given that more FPUs are available.

The t4-s2-c2-d1 case has highest peak bandwidth relative to the “copy” case however this
is somewhat disingeneous as the “copy” figure is also markedly lower (c.f. Figure 6.3)

The two thread SMT case shows somewhat similar features to the two DCM two thread
case above - an oscilation effect with a period around 8GB. As noted above we are yet to
explain this fully.

The fastest average bandwidth for STREAM is t8-s2-c2-d2 “triad” at 7.55GB/s which is
36% of the theoretical two DCM figure of 20.82GB/s (c.f. §3.2.7.2) This remains quite a large
discrepancy, we suspect this may be due to the 20.82GB/s figure not taking into account read
to write turnaround and latency.

It is debatable whether the additional data from the “Triad”, “Add” and “Scale” aspects
of the benchmark are instructive for our work. The “Copy” run gives a pretty accurate picture

of bandwidth, the three additional datapoints perhaps not adding much to that picture.

6.1.5 Conclusions about STREAM results

6.1.5.1 A word from McCalpin

McCalpin stated:

STREAM dates back to a time when floating-point arithmetic was comparable in
cost to memory accesses, so that the copy test was significantly faster than the

42 Results & Discussion

others. This is no longer the case on any machines of interest to high performance
computing, and the four STREAM bandwidth values are typically quite close to
each other. [McCalpin 1995]

Our results appear consistent with his assertion - the four codes are within 35% of each
other on the basis of our experiments.

6.1.5.2 SMT mostly harmless ?

Our trials with STREAM suggest that, at worse, SMT has a slight negative effect from an
aggregate memory bandwidth standpoint - “Triad” and “Add” achieved higher bandwidth
than “Copy” alone irrespective of whether the additional parallelism was achieved through
CMP/SMP or SMT. The “Scale” results were a few percent better for the SMT cases than the
corresponding CMP/SMP case; in fairness this sort of improvement would likely dissapear in
a real world environment where other threads of execution are vying for cache.

Conversely, the results discussed in §6.1.2.3 suggest that if the codes in question have
a need for maximal per-thread bandwidth that SMT can in fact work against you if used to

achieve eight threads of execution, or four threads using a single DCM. Given that you can
achieve four threads of execution without SMT it seems unlikely that this particular config-
uration would be used in practice unless the other DCM was unavailable (perhaps through
being used in another partition). This result is consistent with the observations in [Sinharoy
et al. 2005, pp 514] that we discuss at §3.2.6.

Table 6.3 provides a summary of STREAM performance for threads with and without SMT
enabled - the SMT vs ST cases. Main memory figures are followed by the equivalent from our
20MB in cache trial in parenthesis.

We have more to say on this in our conclusions (§7.1.1) but would observe that SMT is a
win in the majority of cases, the exception being the single DCM, two core case where overall
we see a minor degredation in performance. Referring back to Figure 6.2 we see that this
reduction in performance only occurs from around 16GB onwards as noted previously.

The figures for the 20MB trial in cache show a markedly higher improvement than the
main memory counterparts when SMT is enabled.

t8-s2-c2-d2 t4-s2-c1-d2 t4-s2-c2-d1 t2-s2-c1-d1

Benchmark vs vs vs vs Average

t4-s1-c2-d2 t2-s1-c1-d2 t2-s1-c2-d1 t1-s1-c1-d1

Copy 0.93 (28.28) 6.43 (27.95) -1.55 (1.47) 6.96 (26.38) 3.19 (21.02)

Scale 1.38 (14.70) 9.58 (27.98) -1.18 (10.09) 9.68 (27.49) 4.86 (20.07)

Add 1.19 (12.42) 9.21 (-4.59) -0.24 (-1.11) 11.04 (61.85) 5.30 (17.14)

Triad 2.17 (11.69) 12.75 (6.44) 0.24 (-1.15) 14.8 (62.99) 7.49 (19.99)

Average 1.42 (16.77) 9.49 (14.44) -0.68 (2.33) 10.62 (44.68) 5.21 (23.51)

Table 6.3: Performance gain (%) for SMT vs ST cases STREAM Benchmarks - Main Memory,

Cache in parenthesis

§6.2 Barrier & Locking Measurements 43

6.2 Barrier & Locking Measurements

The experimental setup used for our investigation into barrier and locking performance is
outlined in §4.10

For all experiments the single thread case is included for a reference as it gives some mea-
sure of the overhead of the code surrounding the barrier proper.

Conventional shared memory based locking and barrier techniques such as those we stud-
ied are heavily influenced by cache and main memory latency. We now examine the results in
detail.

6.2.1 Barrier Results

 0

 2

 4

 6

 8

 10

 12

 14

t1-s1-c1-d1

t2-s1-c2-d1

t2-s2-c1-d1

t4-s2-c2-d1

t2-s1-c1-d2

t4-s1-c2-d2

t4-s2-c1-d2

t8-s2-c2-d2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

m
ic

ro
se

co
nd

s
pe

r
pt

hr
ea

ds
 b

ar
rie

r
(a

dj
us

te
d

fo
r

nu
m

be
r

of
 th

re
ad

s)

m
ic

ro
se

co
nd

s
pe

r
at

om
ic

 b
ar

rie
r

(a
dj

us
te

d
fo

r
nu

m
be

r
of

 th
re

ad
s)

Threads

Barrier Timings - jago - 500 iterations of 10,000 barriers (runs 20061023)

Barrier - pthreads mutex - runs 1-4
Barrier - atomic dec - runs 1-4

Figure 6.8: Comparison of pthread and atomic based barrier codes for different thread combi-

nations. Note different scales for pthread (red) and atomic-dec (green) results

Figure 6.8 shows the results obtained on jago for our two barrier codes. For each thread
combination, four runs were performed, results for each run are shown next to each other in
the graph. The times shown are per barrier - that is total time normalised by the number of

threads being synchronised. Thus, if perfect scalability was achieved, we would expect the
results to be flat across the different thread combinations3. The two DCM cases are the four to
the left, single DCM cases the four on the right hand side. Within this the two SMT cases are
on the left, non-SMT on the right.

The pthread based code ran rather slower than the atomic dec version which has a shorter
code path and so is presented on a different scale. A linear scale is used for the ‘y’ axis to allow
the relative performance to be gauged.

3Assuming the barrier codes are O(n) where n is the number of threads

44 Results & Discussion

6.2.1.1 pthread results

The general trend for the pthread results is that two DCM cases are slower than their single
DCM counterpart and that the code generally ran slower as the number of threads increased.

Compared against the equivalent atomic case, the pthreads code was slower in all but two
instances - those that made use of two cores - t4-s1-c2-d2 and t2-s1-c2-d1.

6.2.1.2 atomic results

The t1-s1-c1-d1 case shows the overhead of the atomic barrier code to be ≃80ns - somewhat
higher than expected. A examination of the underlying assembler code would presumably
cast some light on this - unfortunately we did not have a chance to perform such analysis.

The single DCM cases are faster overall than any of the two DCM cases - a reflection of
not needing any cache line transfers across the fabric. The two thread cases give a clean test
case for us to examine the effects of the cacheline being bounced across the fabric. The single
DCM case t2-s1-c2-d1 runs at 0.13µs per barrier compared to 0.26µs for the two DCM, single
core case t2-s1-c1-d2 representing a difference of 0.13µs or some ≃224 cycles.

The point of coherency for the single DCM case is the L2 cache which can be accessed with
a 13 cycle latency (≃78ns); however reads will of course be serviced from the cores local L1
which has a 2 cycle delay. This contrasts with our two DCM case where the coherency point
remains L2, but for the “other” CPU it is L2.754

The one to two DCM difference can be further quantified by examining the t4-s2-c1-d2
(0.23µs) vs t2-s2-c1-d1 (0.13µs) and t4-s1-c2-d2 (0.22µs) vs t2-s1-c2-d1 (0.13µs) cases. The aver-
age delta between the two is 0.09µs or, assuming 1.65GHz clock frequency, ≃153 cycles which
is within 8% of the figure published in the POWER5 specifications (140 cycles). We compare
this combination as the layout of threads within the DCM remains the same, the additional
transfers across the fabric being the only change.

The t4-s2-c2-d1 case gives the lowest outright time per barrier figure of 0.12µs. We con-
ject that this occurs as this combination sees all the transfers occuring within the DCM, such
transfers being about an order of magnitude faster than across the fabric. The additional pair
of threads further “amortising” any overhead compared to the two thread single DCM cases.

6.2.1.3 Influence of SMT

Two pairs of cases lend themselves to direct comparison of the SMT and non-SMT cases while
keeping the total number of threads constant; t4-s2-c1-d2 vs t4-s1-c2-d2 and t2-s2-c1-d1 vs
t2-s1-c2-d1.

The pthread codes showed the greatest slowdown when SMT was enabled, in the four
thread case an increase of 3.6µs (46%) and 2.8µs (64%) for two threads. This we attribute
to a more complex code path in the pthread case, something that could be validated with
instruction level analysis.

By contrast the atomic versions were just 40ns/67 cycles (2%) slower with SMT enabled
and the slowdown was the same for two and four threads.

6.2.1.4 Conclusions for Barriers

Overall there is a large increase in barrier time when the barrier is shared across two DCMs.
When Barriers are shared between cores on a single DCM there is a more modest increase than

4Recall that data can be read by DCM 0 from DCM 1’s L2 cache over the fabric in what is called a
L2.75 access

§6.2 Barrier & Locking Measurements 45

when shared between SMT threads.

6.2.2 Round-Robin Locking Results

 1.3

 1.2

 1.1

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

t1-s1-c1-d1

t2-s1-c2-d1

t2-s2-c1-d1

t4-s2-c2-d1

t2-s1-c1-d2

t4-s1-c2-d2

t4-s2-c1-d2

t8-s2-c2-d2

m
ic

ro
se

co
nd

s
pe

r
lo

ck
 (

ad
ju

st
ed

 fo
r

nu
m

be
r

of
 th

re
ad

s)

Threads

Lock Timings - jago - 500 iterations of 10,000 locks (runs 20061023)

Lock - pthreads mutex - runs 1-4
Lock - atomic dec - runs 1-4

Figure 6.9: Comparison of pthread and low level atomic based locking codes for different

thread combinations

Figure 6.9 shows the results obtained on jago for our two lock codes and is laid out in a
similar fashion to the barrier results at Figure 6.8. Once again the times shown are per lock
divided by the total number of threads in use.

For our locking codes, the pthread and atomic versions are, with one exception, much
more closely matched than the barrier codes - typically differing by less than 10%.

The exception is the two thread two DCM case where the atomic code is nearly twice as

slow as the pthread implementation. The fact that the atomic code is so much slower than
its four and eight thread, two DCM equivalents can be attributed to the overhead of the cross
fabric transfer of the cache line. This penalty is paid twice per iteration for any of the two, four
or eight thread cases, in the latter two it is amortised to a far greater degree5.

However we are yet to arrive at an explanation for the pthread code exhibiting far less of
a penalty than the atomic case.

For the two DCM cases we see the pthread implementation being faster than the atomic
code by an average of 5%, the exception as noted being the two thread two DCM case that is

closer to 55% faster.

The single DCM cases see this trend reversed with the atomic code being consistently
faster than pthreads. The delta is greater than the two DCM cases, ranging from 3.5% for the

5Recall that the order in which the locks are taken is deterministic here due to the round robin design
unlike the barrier case which are more random

46 Results & Discussion

four thread case to 25% for the t2-s1-c2-d1 case.
The single thread case which provides a sense of the base overhead is more closely matched

than the Barrier case - the pthread and atomic codes being within 30% of each other. Again
an assembler level analysis would show in detail where the differences lie but we conject it is
related to the overhead of calling into the pthreads library.

6.2.2.1 Influence of SMT

We now consider the influence of SMT in a similar manner to that used to compare the barrier
codes in Section 6.2.1.3 For these comparisons we again look between cases with the same
total number of threads.

As noted above, two cases lend themselves to direct comparison of the SMT and non-SMT
cases: t4-s2-c1-d2 vs t4-s1-c2-d2 and t2-s2-c1-d1 vs t2-s1-c2-d1.

The SMT enabled cases are consistently quicker than the non-SMT case for both the four
and two thread tests which we attribute to better cache behaviour - in the SMT enabled cases
there is a greater likelyhood that the operations can be performed with reference to L1 rather
than L2 cache.

As noted previously the single DCM cases see the atomic code being quicker than pthreads,
a trend that is reveresed for the two DCM case. None the less it is reasonable to conclude that
SMT is a win for these codes.

The t8-s2-c2-d2 case is the same as the t4-s1-c2-d2 trial with the addition of SMT. We see
a reduction in the per-lock time of 99ns (16%) for the pthread case and 112ns (13%) for the
atomic operation, a result of a greater number of lock resolutions being handled within L1 in
the eight thread case.

Of the three four thread cases, the t4-s2-c2-d1 case is understandibly the quickest. There
are no cross fabric cacheline transfers involved and so delays are minimised.

6.2.3 Summary of SMT effects on Barrier and Locking trials

t8-s2-c2-d2 t4-s2-c1-d2 t4-s2-c2-d1
Benchmark vs vs vs Average

t4-s1-c2-d2 t2-s1-c1-d2 t2-s1-c2-d1

Barrier - pthread -69.31 -85.31 -135.11 -96.58

Barrier - atomic 15.863 12.01 9.03 12.30

Round-Robin Lock - pthread 16.65 -4.96 29.09 13.60

Round-Robin Lock - atomic 13.85 39.94 9.75 20.85

Table 6.4: Performance gain (%) for SMT vs ST cases for Barrier and Lock Benchmarks

Table 6.4 shows the data for our SMT vs ST pairs. Comparing Barriers or Locks in a sit-
uation where the total thread count varies is somewhat arbitrary as for any O(n) or higher
algorithim the time taken per lock will necessarily increase with the number of locks.

None the less the comparison provides an interesting data point alongside the STREAM
results presented in Table6.3 and those for NAS that appear in Table 6.6 in the next section.

The data presented shows a dramatic reduction in performance with the addition of SMT
for the pthread barrier codes and a slight degradation for the t2-s1-c1-d2 vs t4-s2-c1-d2 trial
of the pthread locking code. Otherwise SMT once again provides an overall gain, something
that can be attributed to a greater number of lock “transfers” occuring within the same core.

§6.2 Barrier & Locking Measurements 47

6.2.4 Comparison of results against model

Model Model Measured Measured

Thread arrangement Total Per Thread pthread atomic

t2-s2-c1-d1 2.42 1.21 283 246

t4-s2-c2-d1 18.18 4.55 317 306

t2-s1-c2-d1 15.76 7.88 441 331

t8-s2-c2-d2 190.28 23.79 599 642

t4-s2-c1-d2 172.10 43.03 689 724

t4-s1-c2-d2 185.44 46.36 698 754

t2-s1-c1-d2 169.68 84.84 677 1237

t1-s1-c1-d1 n/a n/a 205 144

Table 6.5: Estimated and measured latency in nanoseconds. Estimates assume POWER5 at

1.65GHz

In Chapter 5 we proposed a model to estimate the performance of the round-robin locking
codes for the different thread combinations.

As Table 6.5 illustrates we were, unfortunately, way off in the predicted figures compared
to those measured.

However the model did accurately determine the cycles per thread ranking of the trials
including the somewhat subtle distinctions between SMT and ST cases with the same number
of threads.

We conject that the model inadequately took into account the overhead associated with the
coherency traffic and execution time of the lwarx and stwcx instructions (c.f. Figure 4.7) The
sync and isync instructions are also known to be expensive, though their effect is somewhat
accounted for in the inclusion of terms for the cacheline transfer itself.

By way of example, when a stwcx write originating on smt0, Core1, DCM1 completes
it must be propagated to the other caches which may include inter-DCM and/or cross fab-
ric updates depending on the case. Hence our model needs some additional terms that are
dependent on the other cores active in each case.

While really a matter for future work, we speculate that the following equation would get
us closer to the observed data:

ti = a0 + a1 × lt

Where ti is the total time per iteration, a0 and a1 are system dependent constants, and lt is
the latency from the original model (4ls + 2lc + 2l f for the t8-s2-c2-d2 case).

6.2.5 Additional Barrier and Locking Results

We made use of a larger POWER5 machine fandango2 to collect some results for our barrier
and locking codes.

fandango2 has four DCMs - double the number used in jago, this necessitated adding a
suffix to our thread labelling scheme. By way of example there are now at least two t4-h2-c1-
d2 combinations so we have labelled them t4-h2-c1-d2 (a) and t4-h2-c1-d2 (b). The symmetric
nature of the design means these combinations should perform identically, this is borne out
by the results obtained.

48 Results & Discussion

Regrettably we did not have time to properly integrate these into the forgoing analysis or
draw any deep conclusions. We include them in Appendix (§??) for completeness and make
the following quick observations;

1. The atomic t8-h1-c2-d4 barrier and lock trials are substantially slower than the other
runs. While the additional cross fabric traffic accounts for this to some degree, the t4-
h1-c1-d4 case isn’t such an outlier.

2. For the most part the results for identical thread combinations between the two ma-
chines are consistent. The underlying hardware is very similar so this is not unexpected.

3. Doubling the number of DCMs in use does not degrade the round-robin locking by as
greater a degree as would have been expected given the additional cross fabric transfers.

6.3 NAS Parallel Benchmarks

The setup used for our investigation into NAS is outlined in §4.11 As noted in that section we
ran each benchmark of interest in turn six times and averaged6 the results. This process was
in turn repeated twice, the graphs in Figures 6.10 and 6.11 showing these two trials adjacent
to each other in each colour bar.

6.3.1 Starting with an Outlier

 1

 10

 100

 1000

cg.Bft.Bmg.Bis.Blu-hp.Abt.Asp.Alu.Aep.A

S
ec

on
ds

Benchmark

NAS Parallel Benchmark - Runs 20061027-143527 & 20061028-123620

t8-s2-c2-d2
t4-s1-c2-d2
t4-s2-c1-d2
t4-s2-c2-d1
t2-s1-c1-d2
t2-s1-c2-d1
t2-s2-c1-d1
t1-s1-c1-d1

Figure 6.10: Results for selected NAS benchmarks on jago showing absolute timings

6arithmetic mean

§6.3 NAS Parallel Benchmarks 49

Figure 6.10 shows the results for nine of the NAS benchmarks against the eight thread
combinations available on jago.

The main datapoint evident is an outlier in the t2-s1-c1-d2 trial of the lu.A benchmark (blue
bar). An examination of the underlying data shows run times of 52.43s, 2747.78s, 2748.50s,
2927.90s, 1300.67s & 1118.26s for the first trial and 151.00s, 150.61s, 52.37s, 52.47s, 52.50s &
981.27s. This produces the two averages plotted of 1815s and 239s both well outside the region
expected on the basis of the other thread combinations tested. We do not have a concrete
explanation for this but time permitting would re-run these benchmarks under closer scrutiny

to see what can be concluded. Examining the raw data suggests that the actual figure is around
53s.

6.3.2 Analysis of non-SMT cases

 6.5

 6

 5.5

 5

 4.5

 4

 3.5

 3

 2.5

 2

 1.5

 1

 0.5

 0
cg.Bft.Bmg.Bis.Blu-hp.Abt.Asp.Alu.Aep.A

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 s
in

gl
e

th
re

ad
 c

as
e

Benchmark

NAS Parallel Benchmark - Runs 20061027-143527 & 20061028-123620

t8-s2-c2-d2
t4-s1-c2-d2
t4-s2-c1-d2
t4-s2-c2-d1
t2-s1-c1-d2
t2-s1-c2-d1
t2-s2-c1-d1
t1-s1-c1-d1

Figure 6.11: Results for selected NAS benchmarks on jago showing ratio to single thread case

We now refer to Figure 6.11 which shows the results obtained relative to the single thread
case.

Looking at the two thread cases we observe that the single DCM run (t2-s1-c2-d1) is con-
sistently faster than the two DCM case (t2-s1-c1-d2). The former achieves anything from 1.6 to

2.5 times the single thread case whereas the latter manages 1.5x for the cg.B trial and otherwise
is scarecely faster than the single thread case.

This result is noteworthy in that it is rather at odds with our experience with STREAM.
This suggests that any improvement in bandwidth that the two DCM case may provide is
outweighed by the additional coherency traffic generated for NAS style workloads.

50 Results & Discussion

t8-s2-c2-d2 t4-s2-c1-d2 t4-s2-c2-d1 t2-s2-c1-d1

Benchmark vs vs vs vs Average
t4-s1-c2-d2 t2-s1-c1-d2 t2-s1-c2-d1 t1-s1-c1-d1

ep.A 17.25 61.05 34.30 34.32 36.73

lu.A (corrected) 10.43 13.52 10.03 15.47 12.36

sp.A 11.82 50.49 10.28 13.83 21.60

bt.A 11.89 45.15 9.72 14.42 20.29

lu-hp.A 4.98 55.34 16.04 20.71 24.27

is.B -26.58 33.33 -27.38 -12.58 -8.30

mg.B 14.11 56.16 14.71 18.80 25.95

ft.B 6.40 55.20 7.58 26.99 24.05

cg.B 20.94 43.60 18.67 37.44 30.16

Overall Average: 7.92 45.98 10.44 18.82 20.79

Table 6.6: Performance gain (%) for SMT vs ST cases NAS Parallel Benchmarks

6.3.3 Analysis of SMT cases

Once again we examine the results for our usual SMT vs ST combinations (c.f. §4.4) Table 6.6
shows a summary in tabular form. In the table the “lu.A (corrected)” entry assumes a run time
of 53s for the anomalous t2-s1-c1-d2 case described in §6.3.1

SMT provides improved benchmark results for all the NAS codes tested with the exception
of is.B - the Integer Sort where it results in a slight degredation of performance in all but one
case.

The most dramatic improvement is in the ep.A run when we contrast the results for t4-s2-
c1-d2 and t2-s1-c1-d2, here the gain is around 61%. The average improvement from enabling
SMT across all the benchmarks with the exception of is.B is of the order of 20%.

Enabling SMT saw a degradation in most cases for is.B, however, comparing t2-s1-c1-d2
and t4-s2-c1-d2 saw the time for the run reduce from 8.5s to 5.7s - an improvement of about
33%

We can account for this by considering that in this case SMT can more effectively cover up
the cache misses (and related coherency traffic) without the core becoming saturated overall.
This latter point also explains the negative figures generally, in these cases the proportion of
cache traffic outweighs the ability SMT to cover up same due to execution unit limitations.

Overall we see NAS benefitting from SMT as it has a more balanced instruction mix and is
not so bandwidth limited. Comparing the improvements here to those seen for STREAM and
the barrier/locking codes supports this conclusion.

6.3.4 Super Linear Speedup

Super Linear speedup is observed on the cg.B benchmark for the t4-h1-c2-d2 and t2-h1-c2-d1
thread arrangements which achieve 4.7x and 2.5x speedup respectively.

Chapter 7

Conclusions & Future Work

7.1 Conclusions

Chapter 6 presented our results the associated discussion of their implications. From these we
feel there are a number of broader points that can be drawn which we present in this section.

7.1.1 Is SMT worth it ?

Our results show SMT to be a useful gain in the substantial majority of cases. The cases where
SMT works against performance are sufficiently specialised that they should not be a cause
for dismissing it.

• STREAM improved by between 3.5% and 7.5% - an encouraging picture for bandwidth
sensitive applications, or at least one that suggests it does no harm!

• Our barrier/locking codes were more of a mixed bag. The worst case being an average
degradation of 97% - possibly more to do with the way our code was written given the
other three benchmarks showed an improvement of between 12% and 21%.

• NAS averaged between -8% and 37%, the average being nearly 21%. Given NAS is a
more real world measure of system performance, this speaks well of the utility of SMT.

If we ignore the two outlier cases we see that SMT provides a performance gain of any-
where from 3% to 37% depending on the workload.

Figures vary but most literature on the subject suggests that the implementation of SMT
on a contemporary processor adds about 10% to the die area (c.f. [Mathis et al. 2005] and
[Sinharoy et al. 2005]).

It would seem that this minimal increase in die area is worthwhile for the performance
gained, doubly so when one considers that a CMP implementation adds closer to 80% die
area for the second core.

Thus we conclude SMT is indeed worth it.

7.1.2 Suitability of selected benchmarks

Both STREAM and NAS give realistic and reproducible measures of processor performance.
The results correlate well in general - a thread combination that was better on one was usually
better on the other.

NAS however did exhibit consistently higher gains for the addition of SMT. With SMT
enabled, the processor is better able to hide cache and memory latency of the system - the

51

52 Conclusions & Future Work

instruction mix in NAS lends itself to this far more so than the simpler codes of STREAM
which are by design bandwidth limited.

This suggests that some caution should be exercised in concluding too much from very
simple benchmarks for SMT based threading - it may be that more complex codes actually do
better.

Our modest barrier and lock benchmark shows some utility in evaluating this aspect of
the system. Clearly a matter for future work but we feel it could be improved and optimised

to give a more consistent sense of processor performance.

7.1.3 A Case for Hierarchical Barriers & Locks

Our measurements on Barriers and Locks demonstrated better performance when dealing
with SMT threads or a threads within a single DCM.

As the number of cores/threads increase, the overhead of thread “unaware” barriers and
locks will become increasingly significant. We believe there is merits in developing hierar-
chical locks that are written to be aware of the underlying thread placement, particularly in

relation to SMT and CMP versus SMP threads.

Such algorithms will require intimate knowledge of the underlying hardware platform.
Accordingly there is a case for providing such primitives to user space from the operating
system kernel or a library rather than relying on the application.

With the increasing number of cores on a “typical” system this would be a timely area of
future research. In §7.2.3 we describe some related work.

7.1.4 Disabling CPUs

As described in §4.2.2 we made use of processor affinity to create the various thread combi-
nations desired. This meant that the unused CPUs were left idle or possibly running other
“light” tasks on what was otherwise a quiesced system.

Through the Linux kernel’s “hotplug” infrastructure it is possible to literally take a CPU
offline completely making it unavailable to kernel or user space.

If a POWER5 core is run in ST rather than SMT mode it can make certain resources that
would have been used by the second SMT thread available to the running thread. These
include additional rename registers, issue queues, the LRQ and SRQ1.

The availability of these additional resources in ST mode may have increased the perfor-
mance seen our benchmarks somewhat. This would have the effect of reducing the apparent
gain of enabling SMT.

Alternatively, the fact that other processes on the system would now be scheduled over a
smaller number of threads may have offset any apparent gain.

Some simple experiments could be performed to compare (say) four thread results for the
various benchmarks when using processor affinity versus actually offlining the CPUs.

7.1.5 Multicore is here to stay

In the “Conclusions” section of the literature review that preceded this work we wrote, in part;

In locating, reading and analysing the literature on the three areas of interest it

has become clear that they document areas of study that are both active and im-
portant.

1LRQ - Load Reorder Queue, SRQ - Store Reorder Queue

§7.2 Future Work 53

We are also struck by the timeliness of such research. While the consideration
of multiprocessing has a rich, and by computer science standards, relatively long
history, it is only in the last few years that devices that implement such techniques
have become commonplace.

We have been fortunate during this process to have had the opportunity to in-
formally discuss future directions with microprocessor designers at a number of
vendors. From these conversations it is clear that multiple threads of execution

are here to stay and that indeed Moore’s law really is slowing.[Blemings 2006]

This was some six months ago now and in that time we have seen all major vendors
announce product lines that have multiple cores on a single die. The extent of this multi
threading is all but astonishing in some cases - the potential for hundreds of cores on a single
die brings with it the potential of systems with thousands of threads in a single box.

Clearly the rapid rise of multiple cores will bring with it an increasing expectation that the

codes we write can exploit them, this irrespective of whether the application is computational
chemistry, virtual reality or the latest media engine.

Our results suggest that this is likely to require changes in the way algorithms are de-
signed and, potentially, a far greater awareness of the underlying hardware than is the norm
at present. Scope exists for the Operating System to abstract this to some degree, but particu-
larly for performance critical codes, the metaphor that it’s all “just a thread” may no longer be
sufficient.

7.2 Future Work

There are several matters that in our view warrant further research.

7.2.1 Recording Amount of Funny

“When you are taking data, if you see something funny, Record Amount of Funny.”2

We saw a number of anomalous results during the course of our experiments. Most were
traced to a programming error or other human factor in short order, others were not.

We are particuarly curious about the “oscillations” observed in the STREAM “Triad” and
“Add” results (Figures 6.6 and 6.7).

They only seem to occur on 4GB boundaries and only in the triad/add cases, where there
are two reads per write. The single thread case has a period of 8GB, the two thread case
potentially of 16GB suggesting some relation to the memory footprint of a single thread.

The eight thread case seems to exhibit a similar oscillation albiet at a shorter period - 2GB
in this case. We assume these two results are somehow related.

We speculate some interaction with the address translation process either in the CPU itself
or perhaps within the Linux kernel.

To investigate this further we would look at such things as;

• Ensure result is reproduceable. While we did several trials in the same one-two week
period all of which showed the same pattern, we’d naturally confirm it was still present
to get a baseline.

2“Milligan’s Law” - attributed to Tom Milligan by Bob Pease in [Pease 1991]

54 Conclusions & Future Work

• Find the shortest trial that produces the effect. The runs used in our experiments take
tens of minutes each. We would hope that a similar pattern would emerge in far shorter
trials.

• Identify the exact transition points - they look to be at 2GB or 4GB boundaries - are they
really ?

• Work out if the effect relates to the fact that “triad” and “add” have floating point in-
structions, or just an additional write. This could be as simple as modifying “copy” to
do two writes of the same data.

• See if similar effects are visible on other POWER5 systems and/or different architectures
entirely.

• Consider whether effects observed relate to underlying DIMM size (2GB on jago).

More generally it would be instructive to use performance counter analysis for some of
our codes to better understand what is occuring. For example counting cache misses would
allow us to see deeper into the behaviour of the locking and barrier codes.

7.2.2 Memory Bandwidth vs Locality Measurements

In §6.1.2.1 we observed an increase in performance in the two thread case as we passed the
half way point in system memory. We believe this is related to a greater proportion of accesses
coming from the second DCM’s memory.

We envisage a micro benchmark or set of modifications to STREAM could allow the user
to specify different memory access patterns in a similar manner to the way we have trialed
different thread arrangements. This could be achieved through the manipulation of pointers
after memory allocation or through the use kernel affinity interfaces.

7.2.3 Hardware Assisted Barrier Techniques

The POWER5 microprocessor provides a set of special purpose registers that are designed to
allow the implementation of hardware assisted barrier routines. At present this facility is only

exposed to the user through library calls unique to the AIX operating system.

In essence these Barrier Synchronisation Registers (BSRs) are a small region of memory
that is shared among multiple CPUs. What makes them unusual is that they have an update

and coherency mechanism that is faster than conventional cache line updates. To achieve this
the size of the region is very small - of the order of a few words.

We have had some informal discussions with IBM’s HPC group who have done some
trials under AIX of these hardware assisted barriers. The results are most encouraging on
small systems (2-4 way) and little short of impressive for larger (32 way and up) machines.

We plan to implement and benchmark BSR support under Linux and compare this against
the best conventional, software based barriers we can find.

7.2.4 Physical address chasing Kprobes

At one point in our work we were faced with the question of how we find out if memory really
is being allocated in the right place. Put another way, are we getting memory on the DCM on
which the thread is running or the other one ? The question arose as we were seeing truly

§7.2 Future Work 55

bizzare results from STREAM - it turned out to be a problem with our synchronisation codes
but this wasn’t discovered until a novel solution to finding physical addresses was found3.

Use was made of the “Kprobes” facility in the Linux kernel to attach a software breakpoint
to the kernel routine responsible for the low level allocation of pages. Thus whenever a new
page was touched our test code would be called.

The test code would output the current process ID and the physical address of the page
allocated. We were able to limit the number of log messages to a managable level by only
inserting the probe immediately prior to running our benchmark - hence we didn’t fill the log
with tens of thousands of extra entries that from background operation of the system. It was

this requirement that motivated our used of the “kprobes” interface4.
This data could then be post processed by matching the captured process ID with the

known ID of the threads of our benchmark - these latter being recorded along with the re-
quested CPU affinity information.

In the end we only spent an afternoon playing with this before realising that the problem
we were chasing was in fact elsewhere. However we did get far enough along to have some
confidence that this technique could usefully be applied in the future.

3Credit for this goes to Chris Yeoh from OzLabs who, prompted by a casual discussion in the morning
put together a rough implementation before afternoon tea...

4An excellent tutorial on kprobes was presented by Dave Boutcher at the 2006 Ottawa Linux Sympo-
sium - [Boutcher 2006]

56 Conclusions & Future Work

Appendix A

Additional Results

A.1 Additional Barrier/Lock Results

These results are provided as discussed in §6.2.5

 0

 2

 4

 6

 8

 10

 12

 14

 16

t1-s1-c1-d1

t2-s1-c2-d1

t2-s2-c1-d1

t4-s2-c2-d1

t2-s1-c2-d2

t4-s1-c2-d2(b)

t4-s2-c1-d2(b)

t8-s2-c2-d2(b)

t4-s1-c2-d2(a)

t4-s2-c1-d2(a)

t8-s2-c2-d2(a)

t4-s1-c1-d4

t8-s1-c2-d4

t8-s2-c1-d4

t16-s2-c2-d4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

m
ic

ro
se

co
nd

s
pe

r
pt

hr
ea

ds
 b

ar
rie

r
(a

dj
us

te
d

fo
r

nu
m

be
r

of
 th

re
ad

s)

m
ic

ro
se

co
nd

s
pe

r
at

om
ic

 b
ar

rie
r

(a
dj

us
te

d
fo

r
nu

m
be

r
of

 th
re

ad
s)

Threads

Barrier Timings - fandango2 - 500 iterations of 10,000 barriers

Barrier - pthreads mutex - runs 1-4
Barrier - atomic dec - runs 1-4

Figure A.1: Barrier results from fandango2

57

58 Additional Results

 0

 1

 2

 3

 4

 5

 6

 7

 8

t1-s1-c1-d1

t2-s1-c2-d1

t2-s2-c1-d1

t4-s2-c2-d1

t2-s1-c2-d2

t4-s1-c2-d2(b)

t4-s2-c1-d2(b)

t8-s2-c2-d2(b)

t4-s1-c2-d2(a)

t4-s2-c1-d2(a)

t8-s2-c2-d2(a)

t4-s1-c1-d4

t8-s1-c2-d4

t8-s2-c1-d4

t16-s2-c2-d4

m
ic

ro
se

co
nd

s
pe

r
lo

ck
 (

ad
ju

st
ed

 fo
r

nu
m

be
r

of
 th

re
ad

s)

Threads

Lock Timings - fandango2 - 500 iterations of 10,000 locks

Lock - pthreads mutex - runs 1-4
Lock - atomic dec - runs 1-4

Figure A.2: Barrier results from fandango2

Appendix B

Other articles

The following references were read during the course of our research and the preparation of
the Literature Review that preceeded it. While they are not directly quoted or cited, we would
none the less like to acknowledge their influence.

• NUMA Architectures: Solaris and Linux, UltraSPARC/FirePlane and Opteron/HyperTransport
[Antony et al. 2006]

• Performance evaluation of SMP architectures using the OpenMP NAS parallel bench-
marks [Jean 2005]

• Superspeculative Microarchitecture for Beyond AD 2000 [Lipasti and Shen 1997]

• RCU vs. Locking Performance on Different CPUs [McKenney 2004b]

• Exploiting Deferred Destruction: An Analysis of Read-Copy-Update Techniques in Op-
erating System Kernels [McKenney 2004a]

• Towards Hard Realtime Response from the Linux Kernel on SMP Hardware [McKenney
and Sarma 2005]

• Extending RCU for Realtime and Embedded Workloads [McKenney et al. 2006]

• One Billion Transistors, One Uniprocessor, One Chip [Patt et al. 1997]

• Superspeculative Microarchitecture for Beyond AD 2000 [Lipasti and Shen 1997]

• Trace Processors: Moving to Fourth-Generation Microarchitecture [Smith and Vajapeyam
1997]

• Microarchitecture Optimisations for Exploiting Memory-Level Parallelism [Chou et al.
2004]

• Effective Instruction Prefetching in Chip Multiprocessors for Modern Commercial Ap-
plications [Spracklen et al. 2005]

• Store Memory-Level Parallelism Optimisations for Commercial Applications [Chou et al.
2004]

• Dynamic-sized Lockfree Data Structures [Herlihy et al. 2002]

• Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects [Michael 2004]

• Chip Multithreading Systems Need a New Operating System Scheduler [Fedorova et al.
2004]

59

60 Other articles

Appendix C

Other Benchmarks

As noted in §2.3, we did not make use of Apex-map or perflab in our work this semester. They
are included here largely for completeness.

C.1 Apex-map

C.1.1 Background

As introduced by Strohmaier and Shan [Strohmaier and Shan 2005] Apex-map is “...a novel
synthetic memory access probe ... to measure global data access performance. Apex-map is
designed based on parameterised concepts for temporal and spatial locality and generates a
global data access stream according to specified levels of these measures of locality.”

Apex-map allows fine grained and highly automated analysis and profiling of a memory
system. It is able to run a series of tests each time changing the temporal or spacial locality
of the data accesses, when plotted it yields a striking picture of memory throughput of the
system in question.

The benchmark is available in both sequential and parallel versions, the latter intended to
be used with mpirun to achieve its parallelism.

C.1.2 Benchmark Internals

The internal operation of apex-map is well described in [Strohmaier and Shan 2005]

The synthetic memory access probe Apex-Map is designed based on parame-
terised concepts for temporal and spatial locality. It uses a blocked data access

to a global array of size M to simulate the effects of spatial locality. The block
length L is used as measure for spatial locality and L can take any value between
1 (single word access) and M. A non-uniform random selection of starting ad-
dresses for these blocks is used to simulate the effects of temporal locality. A
power function distribution is selected as non-uniform random distribution and
non-uniform random numbers X are generated based on uniform random num-
bers r with the generating function X = r1/α. The characteristic parameter α of
the generating function is used as measure for temporal locality and can take val-
ues between 0 and 1. A value of α = 1 generates uniform random numbers while

small values of α generate random numbers centred towards the starting address
of the global data array.

61

62 Other Benchmarks

C.2 perflab

C.2.1 Background & Benchmark Operation

The “perflab” benchmarks are a suite of tools written by Tom Hart and Paul McKenney to
allow the analysis of different locking methods. [Hart 2005] [Hart et al. 2006]

In their work, Hart, McKenney and Demke Brown were particularly focussed on memory
reclamation performance. Accordingly the benchmark runs tests based on “Quiescent-state-

based reclamation (QSBR), epoch-based reclamation (EBR), hazard pointer-based reclamation
(HPBR) and reference counting”[Hart et al. 2006]. They provide user space implementations
of each in the codes.

The general operation of the benchmark is described thus;

In our tests, a parent thread creates N child threads, starts a timer, and stops the
threads upon timer expiry. Child threads count the number of operations they
perform, and the parent then calculates the average execution time per operation
by dividing the duration of the test by the total number of operations. The CPU
time is the execution time divided by the minimum of the number of threads
and the number of processors. CPU time compensates for increasing numbers
of CPUs, allowing us to focus on synchronisation overhead. Our tests report the
average of five trials. [Hart et al. 2006]

C.2.2 Perflab in Our Work

Informal discussions with Paul McKenney suggest that the perflab tools will provide an ideal
platform to understand performance of different locking regimes.

They are designed to be extensively scripted making automated testing practical. This
ought to allow us to readily compare operation of different algorithms under different config-
urations of the POWER5 system.

Unfortunately there is essentially no documentation of the benchmarks and their use be-
yond references in Hart et. al’s two papers. It was suggested to the author that documenting
their use would be a useful contribution to the endeavour...

Also requiring some attention will be the source code which currently only has architec-
ture specific atomic primitives defined for PPC32 and x86-32. Versions will need to be written
to suit PPC64/CBE and UltraSPARC T1 should we elect to run on that platform.

In examining the perflab source code it is clear that the tools lend themselves to modifica-
tion and extension. We may look at adding locking based on standard pthread primitives to
provide a further reference point.

Bibliography

ALVERSON, R., CALLAHAN, D., CUMMINGS, D., KOBLENZ, B., PORTERFIELD, A., AND

SMITH, B. 1990. The tera computer system. In ACM International Conference on Super-
computing (Amsterdam, Netherlands, June 1990). (p. 8)

ANTONY, J., JANES, P. P., AND RENDELL, A. P. 2006. NUMA architectures: Solaris and
Linux, UltraSPARC/FirePlane and Opteron/HyperTransport. 2006 IEEE International Con-
ference on High Performance Computing (to appear). (p. 59)

BAILEY, D., BARSZCZ, E., BARTON, J., BROWNING, D., CARTER, R., DAGUM, L., FATOOHI, R.,
FINEBERG, S., FREDERICKSON, P., LASINSKI, T., SCHREIBER, R., SIMON, H., VENKATAKR-

ISHNAN, V., AND WEERATUNGA, S. 1994. The NAS parallel benchmarks. Technical Re-
port RNR-94-007 (March), NASA Ames Research Center. (p. 5)

BAILEY, D., HARRIS, T., SAPHIR, W., VAN DER WIJNGAART, R., WOO, A., AND YARROW,
M. 1995. The NAS parallel benchmarks 2.0. Technical Report NAS-95-020 (Dec.), NASA
Ames Research Center. (p. 5)

BAILEY, D. H., BARSZCZ, E., BARTON, J. T., BROWNING, D. S., CARTER, R. L., DAGUM,
L., FATOOHI, R. A., FREDERICKSON, P. O., LASINSKI, T. A., SCHREIBER, R. S., SIMON,
H. D., VENKATAKRISHNAM, V., AND WEERATUNGA, S. K. 1991. The NAS parallel
benchmarks. International Journal of Supercomputer Applications 5, 3, 63 – 73. (p. 5)

BLEMINGS, H. 2006. A COMP6720 project: Multithreading issues on contemporary pow-
erpc microprocessors. Available: http://escience.anu.edu.au/project/06S1/
HughBlemings/HughBlemingsFinalReport.pdf. (pp. 1, 5, 53)

BORKENHAGEN, J. M., EICKMEYER, R. J., KALLA, R. N., AND KUNKEL, S. R. 2000. A
multithreaded powerpc processor for commercial servers. IBM Journal of Research and De-
velopment 44, 6 (November). (pp. 7, 8)

BOUTCHER, D. 2006. Practical kernel debugging with kprobes. In Ottawa Linux Symposium
2006 (Ottawa, Canada, July 2006). http://www-users.cs.umn.edu/ boutcher/kprobes/.
(p. 55)

BREEDS, T. 2006. Methodologies for network-level optimisation of cluster computers. Mas-
ter’s thesis, Australian National University. (p. 24)

CHOU, Y., FAHS, B., AND ABRAHAM, S. 2004. Microarchitecutre optimizations for exploit-
ing memory-level parallelism. (p. 59)

CHOU, Y., SPRACKLEN, L., AND ABRAHAM, S. 2004. Store memory-level parallelism opti-
mizations for commercial applications. (p. 59)

DEMONE, P. 2004. Sizing up the super heavyweights. Available: http://www.
realworldtech.com/page.cfm?ArticleID=RWT100404214638&p=1. (p. 12)

FEDOROVA, A., SMALL, C., NUSSBAUM, D., AND SELTZER, M. 2004. Chip multithreading

systems need a new operating system scheduler. In 11th ACM SIGOPS European Workshop
(Sept. 2004). ACM. (p. 59)

HAMMOND, L., NAYFEH, B. A., AND OLUKOTUN, K. 1997. A single-chip multiprocessor.
(p. 7)

63

64 Bibliography

HART, T. E. 2005. Comparative performance of memory reclamation strategies for lock-free
and concurrently-readable data structures. Master’s thesis, University of Toronto. (p. 62)

HART, T. E., MCKENNEY, P. E., AND DEMKE BROWN, A. 2006. Making lockless synchro-
nization fast: Performance implications of memory reclamation. In 2006 International Paral-
lel and Distributed Processing Symposium (IPDPS 2006) (March 2006). (p. 62)

HERLIHY, M., LUCHANGCO, V., MARTIN, P., AND MOIR, M. 2002. Dynamic-sized lockfree
data structures. (p. 59)

JEAN, N. 2005. Performance evaluation of SMP architectures using the OpenMP NAS par-
allel benchmarks. Master’s thesis, Australian National University. (pp. 5, 59)

KALLA, R., SINHAROY, B., AND TENDLER, J. 2004. IBM POWER5 chip: a dual-core multi-
threaded processor. IEEE Micro 24, 2. (p. 10)

LIPASTI, M. H. AND SHEN, J. P. 1997. Superspeculative microarchitecture for beyond ad
2000. (p. 59)

MATHIS, H. M., MERICAS, A. E., MCCALPIN, J. D., EICKEMEYER, R. J., AND KUNKEL, S. R.
2005. Characterization of simultaneous multithreading (SMT) efficiency in POWER5.
IBM Journal of Research and Development 49, 4. (p. 51)

MCCALPIN, J. D. 1995. Sustainable memory bandwidth in high performance com-
puters. Available: http://home.austin.rr.com/mccalpin/papers/bandwidth/
bandwidth.html. (pp. 3, 42)

MCCALPIN, J. D. 2006. STREAM: Sustainable memory bandwidth in high performance
computers. Available: http://www.cs.virginia.edu/stream. (pp. 5, 33)

MCKENNEY, P. E. 2004a. Exploiting Deferred Destruction: An Analysis of Read-Copy-Update

Techniques in Operating System Kernels. PhD thesis, OGI School of Science and Engineering
at Oregon Health and Sciences University. (p. 59)

MCKENNEY, P. E. 2004b. RCU vs. locking performance on different CPUs. In
linux.conf.au (Adelaide, Australia, January 2004). Available: http://www.linux.org.
au/conf/2004/abstracts.html\#90 http://www.rdrop.com/users/paulmck/
rclock/lockperf.2004.01.17a.pdf. (p. 59)

MCKENNEY, P. E. AND SARMA, D. 2005. Towards hard realtime response from the
linux kernel on SMP hardware. In linux.conf.au 2005 (Canberra, Australia, April
2005). Available: http://www.rdrop.com/users/paulmck/RCU/realtimeRCU.
2005.04.23a.pdf. (p. 59)

MCKENNEY, P. E., SARMA, D., MOLNAR, I., AND BHATTACHARYA, S. 2006. Extending rcu
for realtime and embedded workloads. In Ottawa Linux Symposium 2006 (Ottawa, Canada,
July 2006). To appear: http://www.rdrop.com/users/paulmck/RCU/. (p. 59)

MICHAEL, M. M. 2004. Hazard pointers: Safe memory reclamation for lock-free objects.
Transactions on Parallel and Distributed Systems 15, 6 (June). (p. 59)

MIKES, N. 2004. Power to the people. Available: http://www-128.ibm.com/
developerworks/library/l-powhist [Viewed March 28, 2006]. (p. 9)

OLUKOTUN, K., NAYFEH, B. A., HAMMOND, L., WILSON, K., AND CHANG, K.-Y. 1996.
The case for a single-chip multiprocessor. In Proceedings of the Seventh International Sympo-
sium on Architectural Support for Parallel Languages and Operating Systems (Oct. 1996). (p. 7)

PAPERMASTER, M., DINKJIAN, R., MAYFIELD, M., LENK, P., CIARFELLA, B., O’CONNELL,
F., AND DUPONT, R. 1998. Power3: Next generation 64-bit powerpc pro-
cessor design. Available: http://www-03.ibm.com/servers/eserver/pseries/
hardware/whitepapers/power3wp.html [Viewed May 7, 2006]. (pp. 9, 12)

Bibliography 65

PATT, Y. N., PATEL, S. J., EVERS, M., FRIENDLY, D. H., AND STARK, J. 1997. One billion
transistors, one uniprocessor, one chip. (p. 59)

PEASE, R. A. 1991. Troubleshooting Analog Circuits. The EDN series for design engineers.
Butterworth-Heinemann. (p. 53)

SINHAROY, B., KALLA, R. N., TENDLER, J. M., EICKEMEYER, R. J., AND JOYNER, J. B. 2005.
POWER5 system microarchitecture. IBM Journal of Research and Development 49, 4. Available:
http://www.research.ibm.com/journal/rd/494/sinharoy.pdf[Viewed March
30, 2006]. (pp. 8, 10, 11, 12, 42, 51)

SMITH, J. E. AND VAJAPEYAM, S. 1997. Trace processors: Moving to fourth-generation mi-
croarchitectures. (p. 59)

SPRACKLEN, L. AND ABRAHAM, S. G. 2005. Chip multithreading: Opportunities and chal-
lenges. Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture

(HPCA-11 2005). (p. 8)

SPRACKLEN, L., CHOU, Y., AND ABRAHAM, S. G. 2005. Effective instruction prefetching
in chip multiprocessors for modern commercial applications. Proceedings of the 11th Int’l
Symposium on High-Performance Computer Architecture (HPCA-11 2005). (p. 59)

STROHMAIER, E. AND SHAN, H. 2005. Apex-map: A global data access benchmar to ana-
lyze HPC systems and parallel programming paradigms. (p. 61)

TENDLER, J. M., DOBSON, S., FIELDS, S., LE, H., AND SINHAROY, B. 2002. Power4 system
microarchitecture. IBM Journal of Research and Development 46, 1. (pp. 7, 9, 12)

TULLSEN, D. M., EGGERS, S. J., AND LEVY, H. M. 1995. Simultaneous multithreading:
Maximizing on-chip parallelism. In Proceedings of the 22nd Annual International Symposium
on Computer Architecture (Amsterdam, Netherlands, June 1995). (pp. 7, 9)

